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a  b  s  t  r  a  c  t

The  high  utility  of eddy  covariance  (EC)  data  has  made  it the cornerstone  of  carbon  dynamics  research  for
more than  two  decades.  However,  a  substantial  number  of  measurements  from  EC  data  can  be  missing  for
various  reasons.  Robust  gap-filling  methods  are required  to  estimate  carbon  budgets  from  net  ecosystem
exchange  measurements  of CO2 (NEE)  with  high  precision  and  accuracy.  While  the gap-filled  methods
used  have  provided  unbiased  estimates  of  annual  NEE,  little  research  has  been  done  on preserving  the
variance  structures  associated  with  gap-filled  flux  data.  In this  project,  we  used  EC  data  from  a longleaf
pine  ecosystem  located  in  the  southeast  US  to investigate  variance  preservation  in  gap-filling  methods.

We  used  three  non-linear  regression  approaches  to  impute  artificially  created  gaps  of  different  sizes
via  light  and  temperature  response  curves:  1)  “traditional”  fixed  monthly  window,  2) moving  window,
and  3)  moving  window  with  parameter  prediction  using  physiological  drivers.  The results  of  gap-filling
simulations  showed  that  the  variability  of  NEE  estimates  made  with  moving  window  and  parameter
prediction  methods  were  closer  to that  of  observed  NEE,  whereas  the  traditional  method  had  overall  lower
variability.  The  average  root mean  square  errors  (RMSE)  of  predictions  was lower  for  moving  window  and
parameter  prediction  (3.38  and 3.22,  respectively),  versus  that  of the traditional  method  (3.42)  over  one
year,  including  both  daytime  and  nighttime  data  across  all  gap  sizes.  The  variances  associated  with  moving
window and  parameter  prediction  methods  were  52%  and  57%,  respectively,  of  the  observed  variance,
versus  that  of the  traditional  (51%),  while  the  average  of first-order  autocorrelation  coefficients  was  0.76
for each  method  compared  to 0.58  for observed.  The  results  showed  that the  moving  window  approaches
provided  better  estimates  (lower  RMSEs  and  more  similar  variance)  at annual  scales,  yet  underestimated
the  observed  variance.  These  results  contribute  toward  the  development  of a framework  of  standardized
gap-filling  approaches  which  maintain  variation  inherent  in EC  data.  Moreover,  these  results  call  for
further research  on  potential  environmental  drivers  and  their  interactions  for  inclusion  in  gap-filling
models,  as  well  as  exploration  of sampling  size  of  estimation  windows  and  averaging  time  (half  hour)  of
flux data to promote  variance  maintenance  and  decrease  the  autocorrelation  of  predictions.

©  2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The study of terrestrial carbon dynamics plays a crucial role
in understanding the biological processes that contribute towards
atmospheric CO2 concentrations (Baldocchi et al., 1996; Goulden
et al., 1996; Papale et al., 2006). In the present context of global cli-
mate change, the eddy covariance (EC) method has improved our
understanding of temporally and spatially integrated net ecosys-
tem exchange of CO2 (NEE) (Baldocchi et al., 1996; Schimel, 2000;
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Schimel et al., 2001; Stoy et al., 2009). The data produced by the
EC method is not only useful to estimate ecosystem-level annual
carbon budgets, i.e.,  temporal integrals of NEE, but also helps to
establish functional relationships between NEE and micrometeoro-
logical variables, and to devolve below-canopy ecological processes
(Loescher et al., 2003; Sierra et al., 2011).

Despite the mathematical and theoretical foundations of the
EC method, data cannot be collected under all climatic conditions
(Burba, 2013). Datasets routinely have missing data, which arise
during the data collection period or from filtering out data that do
not meet micrometeorological assumptions (Goulden et al., 1996;
Gu et al., 2005; Hollinger and Richardson, 2005; Papale et al., 2006).
The EC datasets often have missing periods as a result of: i) rain and
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condensation in the sampling path, ii) incomplete datasets at the
desired averaging times (i.e., 30-min) during system calibration or
maintenance, iii) poor coupling of the canopy with the above atmo-
spheric conditions, as defined by the friction velocity, u*, or iv)
excessive variation from the half-hourly mean based on an anal-
ysis of standard deviations for wind and CO2 statistics (Whelan
et al., 2013). The series of missing data may  extend over hours or
days, and are non-randomly distributed (Hagen et al., 2006). For
example, at an EC site on the Coastal Plain in the southeastern US,
missing data accounted for 63%, 52% and 66% of nighttime values for
mesic, intermediate and xeric longleaf pine savannah ecosystems,
respectively (Whelan et al., 2013; Starr et al., 2015). EC data gaps
are commonly filled utilizing various empirical or semi-empirical
methods (Falge et al., 2001; Moffat et al., 2007).

Communities of long-term carbon measurement such as
FLUXNET (Baldocchi et al., 2001), AmeriFlux, and the Integrated
Carbon Observation System (ICOS) have stressed standardized and
statistically defensible gap-filling approaches in order to make
synthesis activities feasible, primarily for annual carbon budgets.
Despite this effort, a number of gap-filling approaches are used and
include non-linear regression (NLR), look-up tables (LUT), mean
diurnal variation methods (MDV) (e.g., Falge et al., 2001), artificial
neural networks (ANN) (e.g., Papale and Valentini, 2003; Braswell
et al., 2005; Moffat et al., 2007), Marginal Distribution Sampling
(MDS) (e.g., Reichstein et al., 2005), data assimilation (DAM) or
Bayesian model approaches (Gove and Hollinger, 2006). However,
their performances vary over time and scale (Hollinger et al., 2004;
Moffat et al., 2007), and may  not always be statistically defensible.
The non-random nature of missing data also introduces bias into
predictions, and the autocorrelation among observations artificially
deflates their standard errors (Anderson, 1954).

A study of a few of these gap-filling techniques (Falge et al.,
2001) concluded that MDV, NLR and LUT have similar performance
in terms of the systematic bias that is introduced in annual sums
of NEE. Furthermore, this bias was found to be proportional to the
percentage of gaps filled. While their methods included light and
temperature relationships to fill NEE, they recommended adding
additional predictors, such as vapor pressure deficit and soil water
content, to reduce this systematic bias.

Moffat et al. (2007) followed on this work with a comparison of
common gap-filling methods applied to a wider range of datasets
that included artificially created gaps of varying lengths in time.
This study also showed less bias of gap-filling approaches using
additional new techniques such as ANN. However, studies thus far
have not adequately addressed preserving the variance in gap-filled
data as that observed from the measured NEE.

The variance in data from environmental drivers (e.g., air tem-
perature) used in gap-filling methods has been shown to amplify
or dampen flux estimates depending on the degree of convexity
in the flux-temperature relationship (Sierra et al., 2011). Models
that rely on average temperature underestimate flux values com-
pared to those that preserve observed variance as a consequence
of Jensen’s Inequality, and therefore long-term estimates of NEE
will be further biased (Moffat et al., 2007). This logic would extend
to any case using flux data to estimate any non-linear behavior, as
would be expected with changing chronic disturbance (Smith et al.,
2009). Hence, additional development of techniques is needed that
advances our ability to (i) preserve the variance structures inherent
in EC data, and (ii) reduce the systematic bias as well as the error
due to gap-filling techniques.

End-to-end systematic and random error propagation from EC
data collection and processing steps has not been ensembled into a
defensible uncertainty budget, i.e., classic metrology (JCGM, 2008;
ISO, 1995). Instead, the state-of-the-science has been assessing
individual sources of both systematic and random errors. For exam-
ple, observations before gap-filling have systematic and random

errors (Goulden et al., 1996; Loescher et al., 2006a), which can
be further propagated during gap-filling practices. This issue has
been examined by a few studies. Hollinger and Richardson (2005)
compared flux measurements from two adjacent tower fluxes
to estimate random errors and showed double exponential dis-
tribution and heteroscedastic variances. Uncertainty budgets in
calibrations and random sources of error were estimated from
the AmeriFlux network (Ocheltree and Loescher, 2007), and over-
all uncertainties in EC techniques can be found in Loescher et al.
(2006a). Moffat et al. (2007) compared the error contribution by
different gap-filling methods. Wang et al. (2015) used a resid-
ual bootstrap approach to quantify uncertainty associated with
random measurement and gap-filling errors. The limitations cur-
rently found in gap filling techniques establish a need to further
investigate gap filling techniques that are more robust, statistically
defensible, and work toward preserving the native variance. In this
study, we develop statistically defensible methods to re-introduce
the variance structure in gap-filled NEE data, and compare and con-
trast the results of three model approaches. It is not the intention
of this study to develop uncertainty budgets.

We evaluated the ability of gap-filling methods to preserve
variance inherent in the data structure as a means to provide
more robust estimates of annual sums of NEE. Three different
gap-filling approaches based on non-linear light and temperature
response models were compared. First, a traditional method uti-
lizing static monthly data was  used to parameterize these models.
In the second method, the same models were used with a monthly
moving window rather than the static window. The third method
used models with a monthly moving window and the incorpora-
tion of additional micrometeorological measurements as additional
explanatory variables to better account for the controls on NEE vari-
ability. We  hypothesized that the gap-filling method with moving
window (method 2) would better capture variance in NEE by the
use of varying parameters estimated from moving the sampling
window. We  also hypothesized that using additional environmen-
tal variables in the model (method 3) would improve the variance
preservation of NEE from 30-min to annual time scales.

2. Methods

After EC data were collected from the field and processed into
30-min estimates (rf. Whelan et al., 2015; Starr et al., 2015, 2016),
our first step was to choose a suitable base dataset for analyses.
From this base dataset, four case study datasets were created for
testing different gap-filling methods. While two  of our methods
could be directly tested with the case study datasets, implementa-
tion of our third method required additional preliminary analyses
using the base dataset (Fig. 1).

2.1. Data collection and processing

Carbon fluxes and micrometeorological data were obtained
from three established sites along an edaphic gradient (mesic, inter-
mediate and xeric) at the Joseph Jones Ecological Research Center
(JJERC) in southwestern Georgia, USA (31.2201◦N, 84.4792◦W).
NEE has been measured continuously at all three sites starting in
October 2008 with open path EC techniques, which includes an
infrared gas analyzers (IRGA, LI-7500, LICOR Inc., Lincoln, NE), and
3-D sonic anemometers (CSAT-3, Campbell Scientific Inc., Logan,
UT). The instruments were installed in towers above the forest
canopy at heights: 34.4, 37.5 and 34.9 m for mesic, intermediate
and xeric sites, respectively (∼4.0 m above mean canopy height).
Micrometeorological data were collected and stored in a datalogger
(CR5000, Campbell Scientific Inc., Logan, UT).

Raw EC data were processed following methods of Starr et al.
(2016) and Whelan et al. (2013) using EdiRe (v.1.4.3.1184; Clement
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