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a  b  s  t  r  a  c  t

Efforts  to implement  variational  data  assimilation  routines  with  functional  ecology  models  and  land  sur-
face models  have  been  limited,  with  sequential  and Markov  chain  Monte  Carlo  data  assimilation  methods
being  prevalent.  When  data  assimilation  has  been  used  with  models  of  carbon  balance,  prior  or  “back-
ground”  errors  (in the initial  state  and  parameter  values)  and  observation  errors  have  largely  been  treated
as independent  and  uncorrelated.  Correlations  between  background  errors  have  long  been  known  to  be
a  key  aspect  of data  assimilation  in  numerical  weather  prediction.  More  recently,  it has  been  shown
that  accounting  for correlated  observation  errors  in  the  assimilation  algorithm  can  considerably  improve
data  assimilation  results  and forecasts.  In  this  paper  we implement  a  Four-dimensional  Variational  data
assimilation  (4D-Var)  scheme  with  a simple  model  of  forest  carbon  balance,  for  joint  parameter  and  state
estimation  and  assimilate  daily  observations  of  Net  Ecosystem  CO2 Exchange  (NEE)  taken  at  the  Alice  Holt
forest  CO2 flux site in Hampshire,  UK.  We  then  investigate  the  effect  of  specifying  correlations  between
parameter  and  state  variables  in background  error  statistics  and the  effect  of specifying  correlations  in
time  between  observation  errors.  The  idea  of including  these  correlations  in  time is new  and  has  not
been  previously  explored  in carbon  balance  model  data  assimilation.  In  data  assimilation,  background
and  observation  error  statistics  are  often  described  by  the background  error  covariance  matrix  and  the
observation  error  covariance  matrix.  We  outline  novel  methods  for creating  correlated  versions  of these
matrices,  using  a set  of previously  postulated  dynamical  constraints  to  include  correlations  in the  back-
ground  error  statistics  and  a Gaussian  correlation  function  to include  time  correlations  in  the  observation
error  statistics.  The  methods  used  in  this  paper  will  allow  the inclusion  of  time  correlations  between  many
different  observation  types  in  the  assimilation  algorithm,  meaning  that  previously  neglected  informa-
tion  can  be  accounted  for.  In our experiments  we  assimilate  a single  year  of  NEE  observations  and  then
run  a forecast  for the  next  14  years.  We  compare  the  results  using  our  new  correlated  background  and
observation  error covariance  matrices  and  those  using  diagonal  covariance  matrices.  We  find  that  using
the  new  correlated  matrices  reduces  the  root  mean  square  error  in the 14  year  forecast  of  daily  NEE  by
44%  decreasing  from  4.22  g C  m−2 day−1 to 2.38  g  C  m−2 day−1.

© 2016  The  Authors.  Published  by  Elsevier  B.V.  This  is  an open  access  article  under  the  CC  BY  license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The land surface and oceans are responsible for removing
around half of all human emitted carbon-dioxide from the atmo-
sphere and therefore mediate the effect of anthropogenic induced
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climate change. Terrestrial ecosystem carbon uptake is the least
understood process in the global carbon cycle (Ciais et al., 2014).
It is therefore vital that we improve understanding of the car-
bon uptake of terrestrial ecosystems and their response to climate
change in order to better constrain predictions of future carbon
budgets. Observations of the Net Ecosystem Exchange (NEE) of
CO2 between terrestrial ecosystems and the atmosphere are now
routinely made at flux tower sites world-wide, at sub-hourly res-
olution and covering multiple years (Baldocchi, 2008), providing

http://dx.doi.org/10.1016/j.agrformet.2016.07.006
0168-1923/© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

dx.doi.org/10.1016/j.agrformet.2016.07.006
http://www.sciencedirect.com/science/journal/01681923
http://www.elsevier.com/locate/agrformet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.agrformet.2016.07.006&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:e.m.pinnington@pgr.reading.ac.uk
dx.doi.org/10.1016/j.agrformet.2016.07.006
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


300 E.M. Pinnington et al. / Agricultural and Forest Meteorology 228–229 (2016) 299–314

a valuable resource for carbon balance model validation and data
assimilation.

Data assimilation is the process of combining a mathemati-
cal model with observations in order to improve the estimate
of the state of a system. Data assimilation has successfully been
used in many applications to significantly improve model state
and forecasts. Perhaps the most important application has been
in numerical weather prediction where data assimilation has con-
tributed to the forecast accuracy being increased at longer lead
times, with the four day forecast in 2014 having the same level
of accuracy as the one day forecast in 1979 (Bauer et al., 2015).
This increase in forecast skill is obviously not solely due to data
assimilation but also increased quality and resolution of obser-
vations along with improvements in model structure, however
the introduction and evolution of data assimilation has played a
large part (Dee et al., 2011). The current method implemented
at many leading operational numerical weather prediction cen-
tres is known as Four-dimensional Variational data assimilation
(4D-Var) (Bonavita et al., 2015; Clayton et al., 2013), which has
been shown to be a significant improvement over its predeces-
sor three-dimensional variational data assimilation (Lorenc and
Rawlins, 2005). Variational assimilation techniques minimise a cost
function to find the optimal state of a system given all available
knowledge of errors in the model and observations. The minimi-
sation routine typically requires the derivative of the model which
can sometimes prove difficult to calculate. Using techniques such
as automatic-differentiation (Renaud, 1997) can reduce the time
taken to implement the derivative of a model.

In numerical weather prediction data assimilation has been
predominately used for state estimation whilst keeping parame-
ters fixed. This is because numerical weather prediction is mainly
dependent on the initial state with model physics being well under-
stood. Ecosystem carbon cycle models are more dependent on
finding the correct set of parameters to describe the ecosystem of
interest (Luo et al., 2015). This is possibly why Monte Carlo Markov
chain (MCMC) data assimilation methods have been used more
with ecosystem carbon cycle models. Smaller ecosystem mod-
els are much less computationally expensive to run than large
numerical weather prediction models, meaning that MCMC  meth-
ods (requiring many more model runs than variational assimilation
methods) are more easily implemented. For larger scale and more
complex ecosystem models variational methods represent a much
more computationally efficient option for data assimilation. Varia-
tional data assimilation can be used for joint parameter and state
estimation by augmenting the state vector with the parameters
(Navon, 1998). By including the parameters in the state vector
we must also specify error statistics and error correlations for
them. Smith et al. (2009) show that the prescription of these error
statistics and their correlations can have a significant impact on
parameter-state estimates obtained from the assimilation.

Many different observations relevant to the carbon balance of
forests have now been combined with functional ecology mod-
els, using data assimilation, in order to improve our knowledge
of ecological systems (Zobitz et al., 2011, 2014; Fox et al., 2009;
Richardson et al., 2010; Quaife et al., 2008; Niu et al., 2014). Two
such models that have been used extensively with data assimila-
tion are the Data Assimilation Linked Ecosystem Carbon (DALEC)
model (Williams et al., 2005) and the Simplified Photosynthesis and
Evapo-Transpiration (SIPNET) model (Braswell et al., 2005). Nearly
all data assimilation routines built with these models have used
sequential and Monte Carlo Markov chain (MCMC) data assimi-
lation methods with the exception of a variational routine being
implemented for DALEC by Delahaies et al. (2013). There have been
examples of global land surface models being implemented with
variational methods such as the ORganizing Carbon and Hydrology
In Dynamic EcosystEms model (ORCHIDEE) (Krinner et al., 2005)

and the Biosphere Energy Transfer HYdrology scheme (BETHY) in
a Carbon Cycle Data Assimilation System (CCDAS) (Kaminski et al.,
2013). These examples have mainly been used to assimilate data
from satellite and atmospheric CO2 observations with only a few
cases where site level data has also been assimilated (Verbeeck
et al., 2011; Bacour et al., 2015).

Forest carbon balance model parameters are often determined
in advance of using the model for forecasting by calibration of the
model against observations (Richardson et al., 2010; Bloom and
Williams, 2015). Here we take the alternative approach of con-
current state-parameter estimation. A key difference between the
joint state-parameter estimation approach and a priori calibration
is the way  that the observational data is used. Pre-calibration
approaches train the model against historical data and so become
infeasible when there is a lack of sufficient observational infor-
mation prior to the model forecast period. Joint state-parameter
estimation methods have the advantage that observations could be
used as they arrive in real time, by sequential assimilation cycling.
This approach also gives the possibility of adapting to changes
in the forest (e.g., tree thinning, fires etc.) that may change the
parameter values over time.

Background errors (describing our knowledge of error in prior
model estimates before data assimilation) and observation errors
have largely been treated as uncorrelated and independent in
ecosystem model data assimilation schemes. In 3D- and 4D-Var
schemes background and observation errors are represented by
the error covariance matrices B and R respectively. The off-diagonal
elements of these matrices indicate the correlations between errors
in the parameter and state variables for B and the correlations
between observation errors for R. In the assimilation, the off-
diagonal terms in the B matrix act to spread information between
the state and augmented parameter variables (Kalnay, 2003). This
means that assimilating observations of one state variable can act
to update different state and parameter variables in the assimila-
tion when correlations are included in B. In 4D-Var the B matrix is
propagated implicitly by the forecast model, so that even a prop-
agated diagonal B matrix can develop correlations throughout an
assimilation window. These correlations will only be in the propa-
gated B matrix, with the B matrix valid at the initial time remaining
unchanged. Including correlations in B has been shown to sig-
nificantly improve data assimilation results in numerical weather
prediction (Bannister, 2008).

Including correlations between observation errors has only
started to be explored recently in numerical weather prediction,
with R still often treated as diagonal (Stewart et al., 2013). Includ-
ing some correlation structure in R has been shown to improve
forecast accuracy (Weston et al., 2014). Currently the correlations
included in R have been mainly between observations made at the
same time rather than correlations between observations through-
out time. When assimilating observations, data streams with many
more observations can have a greater impact on the assimilation
than those with fewer observations. In Richardson et al. (2010)
this problem is discussed when assimilating large numbers of NEE
observations along with smaller numbers of leaf area index and
soil respiration observations. To address this problem Richardson
et al. uses a cost function that calculates the product of the depar-
tures from the observations rather than a cost function which sums
these departures, giving a relative rather than absolute measure
of the goodness-of-fit to the observations. This problem is also
encountered in Bacour et al. (2015) when assimilating daily eddy
covariance data with weekly observations of the FrAction of Photo-
synthetically Active Radiation (FAPAR). In Bacour et al. (2015) the
error in observations of FAPAR is divided by two in order to give
these less frequent observations more weight in the assimilation
algorithm. Specifying serial time correlations between observa-
tions represents another way of addressing this problem, whilst
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