

Contents lists available at ScienceDirect

Agricultural and Forest Meteorology

journal homepage: www.elsevier.com/locate/agrformet

Improving the CO₂ storage measurements with a single profile system in a tall-dense-canopy temperate forest

Xingchang Wang, Chuankuan Wang^{*}, Qingxi Guo, Jing Wang¹

Center for Ecological Research, Northeast Forestry University, Harbin 150040, China

ARTICLE INFO

Article history: Received 6 March 2016 Received in revised form 23 June 2016 Accepted 25 July 2016 Available online 3 August 2016

Keywords: Storage term Eddy covariance Net ecosystem exchange Profile system Standardized major axis Error analysis

ABSTRACT

The CO_2 storage (F_s) measurement can contribute significantly to the estimation of the net ecosystem exchange of CO_2 (NEE) especially in tall-canopy forest ecosystems. The F_s is often measured with a profile of CO₂ concentration or with an eddy covariance system at the tower top, but few studies investigated potential errors in the F_s measurements. We assessed the errors in F_s relevant to the vertical distribution of sampling levels and window sizes of averaging time of CO₂ mixing ratio and their effects on NEE in a temperate deciduous forest site in Northeast China using the standardized major axis method. The CO₂ storage per unit height typically decreased with the height increasing, suggesting that the below-canopy layer need a higher spatial resolution. CO₂ storage could be underestimated by up to one third based only on the tower-top measurement. The uncertainty (standard deviation) of the Fs decreased with the length of the averaging time window increasing. However, taking time averaging of CO₂ mixing ratio caused significant underestimate of F_s, and consequently led to significant underestimates of CO₂ uptake and release at a 30-min time scale. Our results highlight that appropriately combining spatial resolution and temporal resolution (response time for a whole sampling of all levels) is essential to improving the F_s estimates with the existing CO₂ profile systems in forest ecosystems. Since the systematic bias and random error in F_s estimate with a single profile system are irreconcilable, there is an urgent need to develop a fast response planar-averaging profile or measure the instantaneous vertical-mean concentration to improve the accuracy of F_s measurement.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Rapid development of the FLUXNET network (Baldocchi et al., 2001) has greatly improved our understanding of carbon and water fluxes in terrestrial ecosystems in recent years (Papale et al., 2015). The eddy covariance (EC) method provides direct flux measurements of trace gas and energy across the atmosphere–ecosystem interface without disturbing the vegetation and the soil (Aubinet et al., 2012). There are more than 600 active sites globally (Papale et al., 2015), among which dozens have more than a decade of the duration of the time series (Baldocchi, 2014). Generally, the net ecosystem exchange of CO_2 (NEE) can be estimated by summing the vertical eddy flux (F_c), the advection term, and the storage term (F_s) (Aubinet et al., 2005). The F_c can be a close estimation of NEE under ideal conditions (horizontal homogeneity, enough footprint,

* Corresponding author.

http://dx.doi.org/10.1016/j.agrformet.2016.07.020 0168-1923/© 2016 Elsevier B.V. All rights reserved. flat terrain or after appropriate axis choice, strong turbulent mixing, and steady state conditions) (Aubinet et al., 2012; Baldocchi, 2003). However, the conditions in field are rarely ideal, which leads to frequent underestimation of NEE due to ignoring considerable contributions of the advection and F_s especially in tall-canopy forest ecosystems (Papale et al., 2006; Yang et al., 2007).

Great efforts have been made on improving the accuracy of F_c and advection (Aubinet et al., 2012), but few studies investigated the errors of F_s . The F_s can be significant at short time periods such as half-hours, particularly around sunrise, sunset, or at night (e.g., Dolman et al., 2002; Finnigan, 2006; Yang et al., 2007). Therefore, the F_s should be taken into account because of potential error propagation in the gap-filling processing for annual NEE estimation (Papale et al., 2006). As long as the F_s is properly tackled, potential underestimations of NEE on calm nights can be greatly reduced after the critical friction velocity filtering (Papale et al., 2006; Yang et al., 2007) or by using the data in the early evening period (van Gorsel et al., 2007).

The first objective of this study is to assess the effect of vertical configuration of a CO_2 profile system on F_s estimates. An essential issue of F_s is the uncertainty caused by the spatial and temporal

E-mail address: wangck-cf@nefu.edu.cn (C. Wang).

¹ Present addresses: Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.

Nomenclature	
Xc	Molar mixing ratio of CO ₂ (μ mol mol ⁻¹)
Cc	Molar fraction of CO ₂ (μ mol mol ⁻¹)
C _v	Molar fraction of water vapor (mmol mol $^{-1}$)
Pa	Moist air molar density (mol m^{-3})
$\rho_{\rm c}$	CO_2 density $(mg m^{-3})$
$\rho_{\rm dz}$	Molar density of dry air at 36 m (mol m ⁻³)
$\Delta \chi_{\rm c} / \Delta t$	Time derivative of CO ₂ mixing ratio
$\Delta \chi_{cz}$	Change of the molar mixing ratio of CO ₂ at the EC
	height (µmol mol ⁻¹)
Δt	Time interval between the two samplings (1800 s)
EC	Eddy covariance
F _c	Vertical eddy flux (μ mol m ⁻² s ⁻¹)
Fs	Storage term (μ mol m $^{-2}$ s $^{-1}$ or μ mol m $^{-3}$ s $^{-1}$)
F_{s_EC}	Storage term by the tower-top method
_	$(\mu mol m^{-2} s^{-1})$
F _{s-p}	Storage term by the eight-level profile system
	$(\mu mol m^{-2} s^{-1})$
F _{s_p36m}	Storage term by the top level of the profile system $(-1)^{-2}$
	$(\mu mol m^{-2} s^{-1})$
H	Height of the EC system (36 m)
IKGA	Infrared gas analyzer
	Leaf area index (m ² m ⁻²)
IVI	Number of time windows for averaging of CO_2 mix-
М	Molar mass of CO-
N	Number of compling levels of a profile system
NEE	Net ecosystem exchange of $CO_{\rm c}$ (u mol m ⁻² s ⁻¹)
	Ordinary least square
р р	Length of the window (min)
SD	Standard deviation
SMA	Standardized major axis

variability in CO_2 concentration. The F_s for a single flux tower design is often estimated from a single vertical profile of CO₂ concentration (Finnigan, 2006). A literature review highlighted that there were substantial differences in sampling designs of CO₂ concentration profile systems, e.g., the number and vertical distribution of sampling levels, time needed for a complete profile measurement, and the percentage of the effective measurement time (Table S1). The simplest method for estimating F_s is based on the change in CO₂ density (or molar mixing ratio) measured by the EC system (the tower-top method) if a profile is not available. Some researchers assume that estimates of Fs based on tower-top and profile measurements are interchangeable (Carrara et al., 2003; Hollinger et al., 1994; Knohl et al., 2003), thus the tower-top method is widely used when profile measurements are not available. However, others report that the tower-top method substantially underestimates $F_{\rm s}$ compared with the profile system (Gu et al., 2012; Iwata et al., 2005; Yang et al., 2007, 1999). Then how many measurement levels are required to accurately quantify the CO₂ mixing ratio profile may depend on canopy complexity and height (Munger et al., 2012). For example, Yang et al. (2007) reported that more sampling levels were needed at the Missouri Ozark flux site in order to achieve the same level of accuracy as at a boreal aspen site (Yang et al., 1999), perhaps because of the difference in their canopy complexity (vertical complex vs. simple) (Yang et al., 2007). But it is not clear whether the difference in topography (e.g., the top of a ridge vs. flat terrain) contributes to it. In this study, we investigated the vertical configuration of an eight-level profile in a temperate forest at the Maoershan flux tower site in Northeast China with vertical complex canopy structure over the toe slope in a small valley. We will examine the relative importance of the complexity in canopy structure and topography on determination of the number of sampling levels and their vertical distribution.

Our second objective is to quantify the uncertainty (random error) in F_s due to discrete measurements for each level by a single infrared gas analyzer (IRGA). Many researchers use the design of single-IRGA with multiple inlets for CO₂ concentration gradient to remove the systematic errors between IRGAs (Table S1; Munger et al., 2012). The air from each inlet (height level) is sequentially flowed through a manifold and measured with an IRGA (Munger et al., 2012; Xu et al., 1999). The actual measurement from each inlet is thus discrete, and the effective measurement time for each height is much shorter than the averaging period (varying from 8% to 80% for single profile systems, Table S1). Because of the wavelike fluctuation of CO₂ concentration, the instantaneous or small time-window averaged CO₂ concentration may introduce large uncertainty in F_s (Heinesch et al., 2007; Marcolla et al., 2014; van Gorsel et al., 2011). van Gorsel et al. (2011) reported that the uncertainty caused by the wavelike motion of CO₂ concentration and discrete measurement was approximately $0.9 \,\mu mol \, m^{-2} \, s^{-1}$ in an open-canopy forest, which was large compared to the F_s of $0.3 \,\mu$ mol m⁻² s⁻¹. Compared to the open-canopy forest, we will quantify the uncertainty of F_s measured with a profile system in our dense-canopy forest.

The third objective is to test whether time averaging of CO_2 concentration underestimates the F_s and consequently NEE. Theoretically, the F_s is the change rate of the instantaneous CO_2 concentration integrated in the control volume (Finnigan, 2006). For a single flux tower, it is the difference between instantaneous CO₂ concentration profiles at the tower measured at the beginning and end of the flux-averaging period, divided by the length of this period (Finnigan, 2006; Xu et al., 1999). The instantaneous CO₂ concentration profile for a single tower can be very noisy due to wind gusts and may not represent the average concentration of the whole control volume. To reduce the random error caused by insufficient spatial sampling, researchers adopt the strategy of replacing the spatial averaging by time-averaging (Finnigan, 2006). However, Finnigan (2006) inferred that the time-averaging procedure can underestimate F_s by at least 50% in most conditions because of filtering high frequency information. Using the singlepoint high-frequency CO₂ density measurement by the EC system, Yang et al. (2007) qualitatively verified the theoretical inference by Finnigan (2006). In contrast, Ohkubo et al. (2008) augured that the difference in F_s calculated based on a profile system by different sizes of time-averaging window was negligible. Whether the discrepancy is caused by the difference between single-point and profile measurements needs further studies. We will explore how the time averaging of CO₂ concentration influences the F_s and NEE.

In this study, we extended the work conducted by Yang et al. (1999) and Yang et al. (2007), and conducted our study in a temperate broad leaved deciduous forest at the Maoershan Forest Ecosystem Research Station in Northeast China. The fast cycling (one cycle of sequential measurements over the eight levels is completed in 2 min) eight-level profile (AP100, Campbell Scientific Inc., Logan, UT, USA) (Table S1; Wang et al., 2013b) provides us an opportunity to quantify uncertainty due to the discrete measurement and time averaging of CO₂ concentration. The hilly terrain and wind regime are common properties in forest ecosystems. A classic mountain-valley wind system over forest canopy was previously found at the Maoershan site (Wang et al., 2015). The F_s also had a typical diurnal variation in the forest ecosystem, with the negative peak occurring in the early morning and the positive maximum in the early evening (Wang et al., 2013b). Therefore, assessing the effects of sampling strategy and time averaging of the profile system on estimating F_s at the Maoershan site is of importance for assessing the NEE of forest ecosystems in Northeast China, and also has implications for other forest sites. We calculated the Download English Version:

https://daneshyari.com/en/article/6458237

Download Persian Version:

https://daneshyari.com/article/6458237

Daneshyari.com