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a b s t r a c t

This study evaluates the use of automated and manual feature selection – prior to machine learning – for
the differentiation of crops in a Mediterranean climate (Western Cape, South Africa). Five Landsat-8
images covering the different crop class phenological stages were acquired and used to generate a range
of spectral and textural features within an object-based image analysis (OBIA) paradigm. The features
were used as input to decision trees (DTs), k-nearest neighbour (k-NN), support vector machine (SVM),
and random forest (RF) supervised classifiers. Testing was done by performing classifications (using all
spatial variables) and then incrementally reducing the feature counts (based on importance allocated
to features by filters), feature extraction, and manual (semantic) feature selection. Classification and
regression trees (CART) and RF were used as methods to filter feature selection. Feature-extraction meth-
ods employed include principal components analysis (PCA) and Tasselled cap transformation (TCT). The
classification results were analysed by comparing the overall accuracies and kappa coefficients of each
scenario, while McNemar’s test was used to assess the statistical significance of differences in accuracies
among classifiers. Feature selection was found to improve the overall accuracies of the DT, k-NN, and RF
classifications, but reduced the accuracy of SVM. The results showed that SVM with feature extraction
(PCA) on individual image dates produced the most accurate classification (96.2%). Semantic groupings
of features for classification also revealed that using the image bands and indices is not sufficient for crop
classification, and that additional features are needed. The accuracy differences of the classifiers were,
however, not statistically significant, which suggests that, although dimensionality reduction can
improve crop differentiation when multi-temporal Landsat-8 imagery is used, it had a marginal effect
on the results. For operational crop-type classification in the study area (and similar regions), we con-
clude that the SVM algorithm can be applied to the full set of features generated.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Cropmaps assist inmaintaining the health of an economy’s agri-
cultural sector as they are used to update agricultural statistics and
aid in yield forecasting (Castillejo-Gonzalez and López-Granados,
2009). An additional benefit of up-to-date crop maps is increased
environmental sustainability as these maps are required for mod-
elling greenhouse gas variability in agro-ecosystems (Monfreda
et al., 2008). Crop-mapping has traditionally been done using rou-
tine field visits. This methodology is costly and can be inaccurate
when biased sampling schemes are utilised (Castillejo-Gonzalez
and López-Granados, 2009). Remote sensing offers an unbiased,
cost-effective, and reliable way of mapping crops at a local, regio-

nal, and national scale. Crop discrimination using remotely sensed
data is, however, not without challenges. Certain crop types have
similar spectral signatures, which makes it difficult to differentiate
them from one another when using multispectral imagery. Since
different crop types have divergent temporal spectral profiles, the
consideration of temporal (phenological) variations between crops
have been shown to improve classification accuracies (Castillejo-
Gonzalez and López-Granados, 2009). However, some crop types
may display intra-class temporal variability (different phenological
growth patterns) from farm to farm due to either natural develop-
ment variation or diverse crop-management decisions made by
farmers (Peña-Barragán et al., 2011).

Nevertheless, the value of multi-temporal data for crop discrim-
ination has been demonstrated by Wardlow et al. (2007), Ozelkan
et al. (2015), Zheng et al. (2015). Multi-temporal data allows for
the generation of a large number of features (variables) for each
image acquisition date, which has been shown to substantially
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improve results (Heinl et al., 2009). However, the use of multi-
temporal data often leads to very high feature counts (Lu and
Weng, 2007; Heinl et al., 2009). Too many features will lead to
the so-called ‘‘curse of dimensionality”, whereby the performance
of classifiers is hampered by the imbalance between training sam-
ples and features (Rodriguez-Galiano et al., 2012). This is driven by
the problem of sparsity, where training data becomes too sparse to
cope with the large volume of feature space brought on by large
numbers of variables (Myburgh and Van Niekerk, 2013). Classifiers
consequently require an increasing number of training samples as
feature dimensionality increases.

Large sets of training samples are not always feasible due to the
high costs associated with field visits (Castillejo-Gonzalez and
López-Granados, 2009). Another approach to mitigate high dimen-
sionality is to carry out feature extraction and/or feature selection
(Guyon and Elisseeff, 2003). Feature extraction involves the
replacement of the original data by a new collection of features
representing most of the variance of the original data
(Benediktsson and Sveinsson, 1997). The most common feature-
extraction method is PCA, which transforms the data into a new
set of principle components (PCs) that describes the underlying
structure of the original dataset (Zhang and Mishra, 2012). Other
feature-extraction methods include Tasselled cap transformation
(TCT) and the generation of spectral indices. The TCT is a process
whereby spectral data from an optical sensor (predominantly
Landsat) is compressed into a few bands associated with a scene’s
physical characteristics while suffering minimal information loss
(Huang et al., 2002). Spectral indices are essentially arithmetic
operators performed on multispectral imagery (or any additional
data), which results in a new composite image (Campbell and
Wynne, 2011). Examples include NDVI (normalised difference veg-
etation index), SAVI (soil-adjusted vegetation index), and EVI
(enhanced vegetation index). PCA, TCT, and spectral indices are
commonly used when classifying crops with remotely sensed data
(Simms et al., 2014; Campbell et al., 2015; Zheng et al., 2015).

Feature selection involves picking a subset of important fea-
tures from the original dataset to reduce data dimensionality
(Guyon and Elisseeff, 2003). The main feature-selection approaches
are wrappers, embedded methods, semantic groupings, and filters.
A wrapper evaluates various subsets of features during the classi-
fication process by making use of the learning algorithm itself
(Kojadinovic and Wottka, 2000). The advantages of wrappers
include interaction between model selection and feature-subset
search, and the capability to take feature dependencies into
account. However, wrappers have a high risk of overfitting and
are also computationally intensive, as every feature subset pro-
posed by the subset selection measure is evaluated in the context
of the learning algorithm (Saeys et al., 2007). Examples of wrappers
include recursive feature elimination (Shahi et al., 2016), sequen-
tial feature selection (Lagrange et al., 2016), and genetic algorithms
(Persello and Bruzzone, 2016).

Embedded feature-selection methods are similar to wrappers as
they are also used to optimize the performance of a learning algo-
rithm (Guyon and Elisseeff, 2003). Embedded techniques learn
which features contribute the most to the accuracy of the classifi-
cation while the model is being created. The difference between an
embedded approach and a wrapper is that the former method uti-
lizes an intrinsic model-building metric during learning. Examples
of embedded methods include L1 (LASSO) regularization and DTs
(Huang et al., 2002). Semantic feature selection simply involves
the selection of features according to their type or those deemed
most important by an expert. Examples include using only spectral
features, only indices, only texture features, etc.

A filter is a pre-processing step that is independent of the learn-
ing algorithm (Fourie, 2011). This step results in a faster learning
pipeline for the feature-selection algorithm (when multiple classi-

fiers are used), but filters tend to not perform as well downstream
due to an absence of interaction with the classifier (Kojadinovic
and Wottka, 2000). Three popular filter methods used in remote
sensing are Jeffries-Matusita distance, CART, and RF (Miner et al.,
2009; Rodriguez-Galiano et al., 2012; Hao et al., 2016). CART is a
decision-tree machine learning algorithm used for data mining,
predictive modelling, and data pre-processing. It uses binary recur-
sive partitioning to grow DTs, while the Gini and Twoing methods
search for important relationships and patterns, allowing better
insight into data (Breiman et al., 1984). It can be used to create a
short list of predictor variables for use with another predictive
method (Miner et al., 2009). Yu et al. (2006) used CART for detailed
vegetation classification with high spatial resolution imagery and
found that it improved classification accuracy. Yu et al. (2006)
started with two out of 52 variables and found an increase in over-
all accuracy with the addition of features from 1 to 27, after which
accuracies began to decline. Conrad et al. (2011) analysed the
effect of CART feature selection on crop classification accuracy
using multi-temporal MODIS imagery. They found that CART was
able to improve classification accuracy by up to 7% and ascribed
this to the prioritization of segments representing active phases
of the different crops’ phenological development.

RF is a collection of DTs that form an ensemble learning method
for classification or feature selection (Pal and Mather, 2003).
Rodriguez-Galiano et al. (2012) assessed the effect of RF feature
selection on Mediterranean land-cover classification (including
multiple crop classes) with multi-seasonal imagery and texture.
They found that feature selection using RF had a positive effect
on image classification (overall accuracy increases of up to 10%)
and commented that feature selection reduced the effect of the
‘‘curse of dimensionality”. Hao et al. (2016) utilized RF feature
selection for crop classification with multi-temporal MODIS ima-
gery and claimed that the technique allowed the identification of
the optimal portion of features required for an accurate discrimina-
tion between crop types.

Compared to the traditional pixel-based image analyses (PBIA),
OBIA approaches have been shown to produce higher classification
accuracies in some cases (Castillejo-Gonzalez and López-Granados,
2009; Yan et al., 2015), while Duro et al. (2015) found that both
paradigms produced similar results. In general, OBIA is preferred
only if the objects of interest are significantly larger than the pixels
of the imagery (Blaschke, 2010).

This study evaluates the use of multi-temporal, object-based
supervised classification for the differentiation of crops in a
Mediterranean climate (Cape Winelands, South Africa). Five
Landsat-8 imageswere used to generate a large (205) set of features.
A small set (159) of fields representing the seven major crops in the
regionwas selected to train and assess the classifiers. The size of the
in situ dataset was purposefully limited to evaluate the classifiers’
ability to perform with minimal training data (i.e. under sparse
training conditions). Filter feature selection (using CART and RF),
feature extraction (using PCA and TCT), and thematic feature group-
ings were applied to the full feature-set to assess whether these
techniques improve classification accuracies. The different
feature-sets were used to train four machine learning classifiers,
namely DT, k-NN, RF and SVM. The classification results are inter-
preted in the context of finding an operational solution for the pro-
duction of accurate crop-type maps in the Cape Winelands region.

2. Materials and methods

2.1. Study area and period

The experiments were carried out in a 1040 km2 area within the
Cape Winelands region, South Africa (Fig. 1). The area, which
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