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a b s t r a c t

Apart from socioeconomic factors, success of robotics in agriculture lies in developing economically
attractive solutions with efficiency comparable to that of the humans. Fruit localization is one of the
building blocks in many robotic agricultural operations (e.g., yield mapping and robotic harvesting) that
determines 3D Euclidean positions of the fruits using one or several sensors. It is crucial to guarantee the
performance of the localization methods in the presence of fruit detection errors and unknown fruit
motion (e.g., due to wind gust), so that the desired efficiency of the subsequent systems can be achieved.
For instance, inaccurate localization may severely affect fruit picking efficiency in robotic harvesting. The
presented estimation-based localization approach provides estimates of the fruit positions in the pres-
ence of fruit detection errors and unknown fruit motion, and it is based on a new sensing procedure that
uses multiple ðP 2Þ inexpensive monocular cameras. A nonlinear estimator called particle filter is devel-
oped to estimate the unknown position of the fruits using image measurements obtained from multiple
cameras. The particle filter is partitioned into clusters to independently localize individual fruits, while
the behavior of the clusters is manipulated at global level to maintain a single filter structure. Since
the accuracy of localization is affected by errors in fruit detection, the presented sensor model includes
non-Gaussian fruit detection errors along with image noise. Fruit motion can significantly reduce har-
vesting efficiency due to errors in locating moving fruits. In contrast to existing methods, the dynamics
of fruit motion are derived and included in the localization framework to obtain time-varying position
estimates of the moving fruits. A detailed theoretical foundation is provided for the new estimation-
based fruit localization approach, and it is validated through extensive Monte Carlo simulations. The per-
formance of the estimator is evaluated by varying the design parameters, measurement noise, number of
fruits, amount of overlap in clustered fruit scenarios, and fruit velocity. Correlation of these parameters
with the performance of the estimator is derived, and guidelines are presented for selecting the design
parameters and predicting performance bounds under given operating conditions.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

The US fresh fruit industry is facing growing global market pres-
sures that threaten its long-term viability. The combination of low
commodity prices both domestically and abroad, high labor prices

and low labor productivity present significant challenges for the
fresh fruit market. In addition, the labor intensive and injury-
prone working conditions experienced in specialty crop harvesting
are leading to decline in skilled labor availability and increase in
harvesting costs (Gongal et al., 2015). For example, Florida citrus,
which is approximately 480,121 acres, had harvesting costs about
2–4 times Brazilian harvesting cost in the period from 1979 to
2009. In 2008–09, the delivered-in cost of Florida orange was
$1.070 per pound solids while that of the Brazilian orange was
$0.725 per pound solids. The harvesting cost alone for Florida
orange in 2015–2016 was $1208 per acre compared to the
production cost of $2328 per acre. According to economic studies,
harvesting cost must be reduced by 50% to maintain global
competitiveness (Brown, 2002). Robotic harvesting is being
investigated as an alternate solution to manual picking to improve
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productivity, reduce harvesting costs, and, in general, create a sus-
tainable agriculture industry.

Vision systems are ubiquitous in agricultural robotics due to
their ability to provide information rich image feedback of the
environment at reasonably low cost. The main drawback of vision
systems is the absence of depth information since an image is
formed by projecting the three-dimensional (3D) Euclidean space
onto a two-dimensional image plane. Various operations in robotic
harvesting, e.g., path planning and servo control, can benefit from
knowing of the depth of the objects or features viewed by camera.
Consider an example of robotic harvesting of specialty crops, such
as citrus, where it is necessary to determine the order in which the
fruits should be picked to minimize the robot travel time. To design
such optimal trajectories for robots, it is necessary to know the
Euclidean position (or depth) of the fruits. The process of obtaining
Euclidean position by recovering or measuring the depth informa-
tion is referred to as localization.

Vision-based localization approaches can be broadly classified
into systems that use vision (or camera) as the only sensor and sys-
tems that use range measurement sensors in conjunction with
vision. The later class of systems employ sensors such as lidar,
sonar, and infrared range finders to determine depth map (e.g.,
see Harrell et al., 1990; Ceres et al., 1998; Jiménez et al., 2000;
Tanigaki et al., 2008; Bulanon and Kataoka, 2010; Feng et al.,
2012). Lidars and sonars typically provide range estimates by mea-
suring the time-of-flight, i.e., the time required for the light or
sound to travel to an object and back, while infrared sensors obtain
depth using the principle of triangulation. The features or objects
of interest seen in a camera image are subsequently localized by
fusing the image with the obtained depth map. However, range
measuring sensors are not widely used in outdoor fruit mapping
applications, which can be due to high equipment cost of lidars
($3000–$5000) or inaccuracies of infrared sensors and sonars in
cluttered outdoor conditions. Additionally, accurate calibration
can be an issue as the response of infrared and sonar varies with
ambient conditions (e.g., humidity, wind, dust) and the object of
interest (e.g., color, flatness, surface area). The time-of-flight cam-
eras are an emerging technology that uses similar principle as laser
range finders to generate 3D maps by capturing an entire scene
with light pulse. Due to high speeds and less complexity, the
time-of-flight cameras can be promising in agricultural applica-
tions (see Karkee et al., 2014; Gongal et al., 2016). However, at pre-
sent the applicability of the time-of-flight cameras is limited due to
high cost (up to $12,000) and low image resolutions (less than
320 � 240 pixels). Also, the performance of infrared and time-of-
flight cameras operating in the near-infrared range is affected by
solar infrared noise making them best suited at night with supple-
mental lighting. In contrast, vision-only localization systems deter-
mine the unknown depth of an object using machine vision
principles. Structure-from-motion (Muscato et al., 2005; Baeten
et al., 2008) based approaches, using a single monocular camera,
can be used to identify the unknown depth from the knowledge
of the camera motion (displacement or velocity). Our previous
work in Mehta and Burks (2014) relied on a known object model
for depth recovery using a single monocular camera. Stereo-
vision or triangulation based approaches use the notion of dispar-
ity (i.e., the difference in image location of the same 3D point
viewed by two cameras) to determine the depth. Despite added
complexity, stereo-vision is widely used in fruit localization (e.g.,
see Buemi et al., 1996; Kondo et al., 1996; Recce et al., 1996;
Plebe and Grasso, 2001; Van Henten et al., 2002, 2003; Wang
et al., 2013; Font et al., 2014). A comprehensive review of fruit
localization methods can be found in Gongal et al. (2015).

At the University of Florida, we are investigating economically
viable and straightforward sensing solutions for robotic harvesting.
With increase in available processing power and advent of parallel

architectures that use FPGAs and GPUs, stereo-vision-like multiple
camera approaches hold significant potential. One of the
approaches being considered, called layered vision system, consists
of multiple sensing layers wherein each layer in turn is comprised
of multiple ðP 2Þ inexpensive ($30–$50) monocular cameras. The
layers can be assigned specific tasks in robotic harvesting based
on the location of the cameras. For example, a layer with cameras
farthest from the tree canopy can perform fruit mapping while a
layer comprised of robots’ hand-held cameras can be responsible
for visual servo control. Additionally, the layers can be connected
to share information to improve detection efficiency and accuracy.
Motivated by layered sensing, we propose a multiple camera fruit
localization approach where the number of cameras viewing fruits
can be more than two, i.e., beyond standard stereo-vision. The fruit
detection problem is assumed to have been solved (e.g., Plebe and
Grasso, 2001; Hannan et al., 2009; Bulanon et al., 2009; Krizhevsky
et al., 2012; Payne et al., 2014; Zheng et al., 2015; Hung et al., 2015;
Sa et al., 2016; Shelhamer et al., 2017; Bargoti and Underwood,
2017) to segment fruits from the background and yield the coordi-
nates of the fruit centroids in the image space, i.e., 2D image coor-
dinates. Fruit centroid is a point in the 3D Euclidean space, e.g., the
center of sphere for spherical fruits. The image coordinates of the
fruit centroid will then correspond to the center of the circle pro-
jected on an image plane. Spherical fruits (e.g., apples, oranges,
peaches, and tomatoes) that have a well-defined fruit centroid
are an obvious choice for the presented localization method. How-
ever, non-spherical fruits and vegetables, such as cucumber and
zucchini, can also be localized provided the definition of their cen-
troid is established a priori – recognizing that the image projection
of asymmetrical fruits will vary based on the camera’s viewpoint –
and the image coordinates of the centroid can be obtained reliably
during fruit detection. Apart from noise inherently present in dig-
ital cameras, unstructured lighting conditions in outdoor environ-
ments may result in poor image quality, inconsistent object
segmentation, and consequently errors in obtaining the image
coordinates of the true fruit centroids (Tian and Slaughter, 1998).
Noise filtering (Jiménez et al., 2000; Bulanon et al., 2004; Hannan
et al., 2009) and robust segmentation (Tian and Slaughter, 1998;
Tang et al., 2000) approaches may alleviate harmful effects of
noise, however noise cannot be completely eliminated.

In this paper, a Bayesian probabilistic approach is taken to
obtain belief of the true fruit positions instead of attempting to
identify unique or exact solution from the noisy image measure-
ments. Specifically, a nonlinear estimator called particle filter is
presented to obtain the posterior distribution of the fruit positions
using noisy and erroneous image measurements of the fruit cen-
troids. In particle filtering, the posterior distribution is represented
using a set of particles (hypotheses). The paper uses a single parti-
cle filter to estimate the location of multiple fruits. Although a sin-
gle filter ensures computational tractability and offers robustness
to false positives (i.e., false fruit detections) via particle resampling,
it has a limitation to multiple target (or fruit) tracking problems. A
particle filter after resampling may lose particle resolution over
some targets, i.e., it may not be able to localize all targets. To
address this issue while maintaining robustness to false detections,
the particles are partitioned into multiple subfilters using a simple
clustering procedure such that each subfilter is assigned to exactly
one fruit. The subfilters estimate the position of an individual fruit,
and they are processed independently from each other. A single fil-
ter structure enables the global behavior of the estimator to be
affected by dissolving and then reforming the subfilters based on
measurement-particle association following each new measure-
ment. It enables one to eliminate defunct filters arising from false
detections and to accommodate newly detected fruit. Some
parallels can be drawn between the presented approach and the
track-oriented and Bayesian multiple hypothesis tracking (MHT)
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