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A B S T R A C T

The geo-statistical Kriging method is conventionally used in the spatial dimension to predict missing values in a
series by utilizing information from neighbouring data, supported by the hypothesis that mathematical ex-
pectation is a function of distance between observations. By using a data-driven machine learning-based in-
ferencing and exploration framework, this research applies a Kriging-based interpolation in the temporal di-
mension to fill in data gaps in time-series of air temperatures. It assesses its performance for artificial gap
scenarios (ranging in length from single one to six consecutive data points) generated using data with both daily
and hourly resolutions from five sites in Europe (Laqueuille, France; Grillenburg, Germany; Monte Bondone,
Italy; Oensingen, Switzerland; Rothamsted, United Kingdom) and one in France overseas (Sedael, Réunion
Island). Results show that the method is capable of predicting missing temperatures with acceptable accuracy,
especially with the hourly resolution and for non-high elevation sites: modeling efficiency (EF ≤ 1, op-
timum)> 0.8, with the exception of Monte Bondone, placed at> 2000 m a.s.l. (EF < 0). With daily data,
maximum temperature was correctly predicted at all sites (0.6 ≤ EF < 0.9), while some less accuracy (down to
EF < 0.4) was noted when predicting missing daily minimum temperatures. In conclusion, the method appears
suitable to be applied to fill in hourly temperature gaps, requiring more stringent hypotheses concerning daily
data and mountain sites (but further studies are required to draw concluding recommendations).

1. Introduction

Long records of weather data are needed for evaluating scenarios in
natural resource studies (e.g. Shenk and Franklin, 2001; Mavi, 2004). In
many of these studies, surface weather observations are the funda-
mental forcing data of simulation models, for which the absence of a
particular station’s data at a given time can introduce biases into re-
sponses or generate spurious trends (e.g. Hoogenboom, 2000). Missing
data are a common problem in meteorological observational datasets.
Station history records are often incomplete (e.g. Menne et al., 2010)
because instruments may break in malfunction, or data transmission
may be interrupted. Meteorological phenomena such as precipitation,
snow or ice (but also destruction by animals) may even cause the
temporary failure to record observations. Likewise, corrosion is a
common problem linked to system failure in weather stations and data
loggers. Examples of problems that occur when weather stations are not
regularly inspected and maintained can be easily found (e.g. http://
www.surfacestations.org/odd_sites.htm). Ensuring regular maintenance
of equipment and continuity in the collection of station metadata is
critical to long-term station operation and interpretation of the data
(e.g. NRCS, 2009). Although field maintenance and calibration of

instrumentation is expected to be performed by the respective agencies,
budgetary and staffing limitations may prevent routine inspections of
weather stations. Consequently, inattention to maintenance has often
been identified as the greatest source of failure in weather stations and
networks (Davey et al., 2006, 2007).

The process of replacing missing data with substituted values (im-
putation) is known in fields like meteorology, ecology, climatology or
geosciences (e.g. Zhang and Schultz, 1990; Simolo et al., 2010;
McCandless et al., 2011; Taugourdeau et al., 2014). In climate change
impact studies, in particular, a good resolution of weather data in time
and space is needed for creating complete datasets of past climate as a
basis for projecting future climate realizations (Ruane et al., 2015).

Missing data pose the challenge (both conceptual and technical) of
finding a suitable way for replacing the missing values with a prediction
(Schneider, 2001; Gelman and Hill, 2006). Indeed, the development of
approaches for filling gaps in weather time series is a key challenge for
improving data usability, either for statistical description of the me-
teorology of a given weather station or in the view of complex clima-
tological and ecological studies (e.g. Linacre, 1992). At the same time,
there is a need to preserve the existing dataset by replacing missing data
with a “probable value”. The latter depends on other available

http://dx.doi.org/10.1016/j.compag.2017.09.033
Received 23 March 2017; Received in revised form 18 September 2017; Accepted 23 September 2017

⁎ Corresponding author.
E-mail address: gianni.bellocchi@inra.fr (G. Bellocchi).

Computers and Electronics in Agriculture 142 (2017) 440–449

Available online 11 October 2017
0168-1699/ © 2017 Elsevier B.V. All rights reserved.

MARK

http://www.sciencedirect.com/science/journal/01681699
https://www.elsevier.com/locate/compag
http://dx.doi.org/10.1016/j.compag.2017.09.033
http://www.surfacestations.org/odd_sites.htm
http://www.surfacestations.org/odd_sites.htm
http://dx.doi.org/10.1016/j.compag.2017.09.033
mailto:gianni.bellocchi@inra.fr
http://dx.doi.org/10.1016/j.compag.2017.09.033
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compag.2017.09.033&domain=pdf


information, including historical statistics and the climate conditions of
the place of interest. This is where some understanding of the process
under study is required because the density, distribution and range of
the variable used to create an imputation function help determine
which technique is most suitable for the gap-filling purpose. Techniques
for filling missing observations in a time series include temporal in-
terpolations, and rely on the relationship between available and missing
data (Henn et al., 2013). There are three general explanations for
missingness of the data (Rubin, 1987): Missing At Random (MAR),
Missing Completely At Random (MCAR) and Missing Not At Random
(MNAR). If values are missing at random (MAR), then the available data
may be representative of the population. MCAR is a special case of MAR
and occurs when the events leading to data missingness are in-
dependent on both observable and unobservable factors. MNAR hap-
pens when the missing values depend on other missing values, that is,
one or more factors are impossible to quantify and identify (Schafer and
Graham, 2002). The prediction of missing weather data can rely on the
MAR mechanism, because the exact moment when one device stops
functioning is generally unknown (here, we exclude situations in which
recurrent problems are identified, e.g. weather stations suffering power
supply overload or voltage violation during long periods, e.g. Cheng
et al., 2009). In this study, imputation is applied to a weather variable,
i.e. air temperature (sampled at both hourly and daily resolutions), an
important factor controlling most physical, chemical and biological
processes on Earth, which are key to many environmental studies and
the management of Earth surface resources. For instance, air tempera-
ture is a common indicator of ecological efficiency as it is related to
fundamental characteristics of natural and agricultural systems, e.g.
plant processes such as growth, development, sugar partitioning and
stress sensing and response (e.g. White et al., 2005). Most agro-climatic
indicators are based on air temperature (alone or in combination with
other meteorological variables) in order to predict conditions of
drought stress based on water balance calculations (e.g. Matthews
et al., 2008). Energy-based equations have also been put forward for
climate characterization, where the balance of incoming radiation
(playing a major role in field ecology) can be predicted by air tem-
perature data (e.g. Bellocchi, 2011; Bojanowski et al., 2013). In urban
studies, the difference in air temperature between urban and rural lo-
cations within a given time period is a frequently used metric to de-
scribe heat islands (Fabrizi et al., 2010).

The above examples reflect the importance of air temperature in
applications of wide scientific and engineering interest. Although this
primary variable is available in many locations, temperature data series
can contain gaps ranging from several hours to several days. Aim of this
study is to assess a methodology for gap-filling of hourly and daily
temperature series based on a learning process contingent on historical
data series. Geo-statistical techniques, in particular, for which near
spatial data values are more related to each other than distant data
values (Tobler, 1970), are sufficiently versatile to be extended to the
temporal dimension (e.g. Rossi and Posa, 1991; Guccione et al., 2012;
Zehn and Cai, 2015). This study provides an approach for exploring and
assessing the skill of a geo-statistically based method (1-dimensional
case Kriging interpolation) by randomly removing available tempera-
ture data from time series at a variety of sites and then evaluates the
ability of the technique to reconstruct the gaps, with interest in the
impact of the length of missing periods and the fraction of overall
missing data.

2. Methodology

2.1. Kriging-based imputation of missing data

In Supplementary material, we provide a brief review of the main
approaches for the treatment of MAR data in general (also taking into
account developments in data missingness made in other domains, e.g.
medical surveys, Blankers et al., 2010). Through this review, we gained

the understanding that the Kriging interpolation method (whose para-
meterization is developed on the available observations) holds great
potential to reconstruct missing temperature data (the focus of this
study). Moreover, comparatively to other MAR methods, it can also be
relatively easily implemented and flexibly applied.

There are several versions of the Kriging method (Supplementary
material). Here, we use the Ordinary Kriging (OK), which is computa-
tionally practical and easier to implement than other Kriging variants,
that is, it is not necessary neither external data nor an additional
knowledge to determine its parameters. Kriging permits to compute an
unsampled value (z), knowing its coordinates (x, y) and neighbours.
The Kriging methods are generally applied for data spatialization,
where the spatial dimension concerns the position of the data and the
distance between location points is taken into account. To give the
prediction of ̂z s( )0 to the unknown valuez s( )0 , the general equation of
the OK is a linear combination of n known sample values at points si
around s0, based on the vector of n observations at primary locations
and the vector of Kriging weights. The latter reflect the spatial structure
of the method, taking into account the neighbour observations. To
compute the Kriging weights we followed Matheron (1963) and Gandin
(1963), who introduced correlation functions between neighbouring
values, also called semi-variances (Hengl, 2007, 2009). The experi-
mental semi-variance is computed based on the lag vector representing
separation between two spatial locations, the vector of spatial sample
coordinates, and the number of sample pairs separated by lag. The
formula is applied on the pairs of points. Using this formula, a semi-
variogram is produced to describe the spatial auto-correlation of the
variable. Compared to other methods (e.g. covariance), the key ad-
vantages of semi-variograms are: the method is based on raw data and
requires no pre-calculated indicators (e.g. means, minima or maxima);
both linear and non-linear changes can be detected; the identified
change is in relation to expected dynamics, which represent the whole
series considered, not just the start and end of a given series; and the
dynamics of the series can be analysed, as changes in semi-variogram
parameters relate to changes in different aspects of the series. In gen-
eral, the semi-variogram is fitted using authorized variogram models
like linear, spherical, exponential, Gaussian, etc. A semi-variogram is
described by its sill (the semi-variogram upper bound), practical range
(the distance at which the semi-variogram reaches the sill) and nugget
effect (a discontinuity of the semi-variogram that can be present at the
origin, typically attributed to micro-scale effects or measurement er-
rors). An important hypothesis is that the Kriging assumes some form of
stationarity in the variable under study. This could be a limitation in its
use and generalization because time series are often statistically de-
scribed as a random process in which extremes and seasonalities are
more dominant than autocorrelation and stationarity (e.g. Cressie and
Wikle, 2011). Different types of non-stationarity exist (e.g. Meul and
Van Meirvenne, 2003; De Benedetto et al., 2012) and, in practice,
stationarity is often not guaranteed for large distances (Rivoirard,
2005). For instance, a phenomenon may appear stationary locally,
whereas it may be non-stationary over longer distances, e.g. in the
presence of a large-scale trend. Stationarity is an important condition
that is relevant to gap-filling in general (Seitchik, 2012).

In this study, interpolations are based on the gradients between
points of the nearest neighbours in the time series. Missing values are
filled in based on all the characteristics inherent to the historical set.
They are used within a geo-statistical interpolation method to calculate
the best linear unbiased predictor in the geo-statistical context (e.g.
Journel, 1986) by accommodating records by means of a memory-based
process (after concepts by Enzi and Camuffo, 1996; Diodato and
Bellocchi, 2014). Using the memory-based concept, any temperature
value in a time series is affected by its previous neighbours and, in turn,
affects its next-neighbour values. It is based on these principles that
interpolation techniques have been developed to handle continuous
values using data points on either side of the data gap (Koehler, 1977;
Pielke, 1984; Miller, 1990).
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