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a b s t r a c t

Anthracnose crown rot (ACR) is one of the major diseases affecting strawberry crops grown in warm cli-
mates and causes huge yield losses each year. ACR is caused by the fungus Colletotrichum. Since this air-
borne disease spreads rapidly, detection at the early stage of infection is critical. The objective of this
study was to investigate the feasibility of detecting ACR in strawberry at its early stage under field con-
ditions using spectroscopy technology. Hyperspectral data were collected in-field using a mobile plat-
form on three categories of strawberry plants: infected but asymptomatic, infected and symptomatic,
and healthy. As a comparison, indoor data were also collected from the same three categories of straw-
berry plants under a controlled laboratory setup. Three classification models, stepwise discriminant anal-
ysis (SDA), Fisher discriminant analysis (FDA), and the k-Nearest Neighbor (kNN) algorithms, were
investigated for their potential to differentiate the three infestation categories. Thirty-three spectral veg-
etation indices (SVIs) were calculated as inputs using selected spectral bands in the visible (VIS) and near
infrared (NIR) regions to train classification models. The mean classification accuracies of in-field tests for
the three infestation categories were 71.3%, 70.5%, and 73.6% for SDA, FDA, and kNN, respectively. These
accuracies were approximately 15–20% lower than those of the indoor tests. The low accuracy (15.4%) of
classifying healthy leaves in-field using the kNN model was possibly due to the training datasets being
unbalanced. After the adjustment of sample sizes of each category, the accuracies of kNN improved
greatly, especially for the healthy and symptomatic categories. Overall, SDA was the optimal classifier
for both indoor and in-field tests for detection strawberry ACR. However, kNN performed better for
asymptomatic leaves in the field in the case of balanced sample sizes of each category.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

During the 2014 crop year, more than 11,400 acres of straw-
berry were planted in the US (USDA, 2014b). Florida consistently
ranks second in the strawberry production after California, with
an increasing production rate (USDA, 2014a). However, a major
series of diseases threatening strawberry production in Florida
and other warm climate regions is those caused by the fungus Col-
letotrichum (Rodriguez and Redman, 2008), resulting in the disease
anthracnose crown rot (ACR). The species Colletotrichum gloeospo-
rioides is a fungal pathogen that devastates crop plants worldwide.

Host infection involves the differentiation of specialized cell types
that are associated with penetration, growth inside living host
cells, and tissue destruction (O’Connell et al., 2012). The disease
development is favored by warm temperatures and prolonged
periods of wetness which are typical in Florida. Infected plants suf-
fer necrotic crowns followed by sudden wilt and death (Peres,
2015). Infection by one pathogen may leave plants prone to infec-
tion or colonization by other pathogens, which aggravates the sit-
uation. All of these maladies make timely early-stage detection of
ACR critical in strawberry production. Laboratory test approaches
on plant tissue samples such as polymerase chain reaction (PCR),
enzyme-linked immunosorbent assay (ELISA), and loop-mediated
isothermal amplification (LAMP) are highly specific and sensitive
to identify the disease (Bukhari et al., 2012; Chandra et al., 2015;
Debode et al., 2009). However, conventional field scouting for
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ACR in strawberry still relies primarily on visual inspection of the
leaf color patterns and crown structures which is time- and
labor-consuming and requires specialized skills (Debode et al.,
2009; Tapia-Tussell et al., 2008).

Recent developments in agricultural technology have offered
opportunities for non-destructive detection of plant diseases using
spectroscopy (Sankaran et al., 2010). A visible near-infrared spec-
trometer (400–1000 nm) was used in the reflectance mode to dis-
criminate sprouted and intact wheat kernels under laboratory
conditions (Xing et al., 2010). The reflectance at 728 and 878 nm
were used to classify sprouted and intact kernels, and the wave-
length region above 720 nm was used to classify sprouted kernels
of different levels of severity. The correct recognition rates of the
intact, sprouted, and severely sprouted kernels were 100%, approx-
imately 94%, and 98%, respectively. The ability of reflectance spec-
troscopy in three regions, ultraviolet, visible, and near-infrared,
was evaluated indoors to determine the disease severity of tomato
leaves infected with Xanthomonas perforans (Jones et al., 2010). The
authors used partial least squares (PLS) regression, stepwise multi-
ple logistic regression (SMLR), and combinations of PLS and SMLR
to derive four predictive models. The results showed that the
model established by SMLR was the best at predicting the disease
severity with a root mean square difference of 4.9% and a coeffi-
cient of determination of 0.82. Recently, ground-level hyperspec-
tral reflectance was used for in-field detection of plant nitrogen
(Stroppiana et al., 2009; Vigneau et al., 2011; Zhao et al., 2005).
Also, in-field hyperspectral sensing was used for wheat disease
detection and differentiation (Muhammed, 2005). Spectral signa-
tures of hyperspectral data were analyzed in leaves to differentiate
sugar beet diseases (Mahlein et al., 2010). The spectral reflectance
was measured in-field by a handheld spectroradiometer in the
range of 400–1050 nm. The correlation coefficients values were
highest (r = 0.85) in the visible region. This study also provided a
basis for further classification methods of sugar beet diseases at
different development stages.

Spectral vegetation indices (SVIs) from ground-level hyperspec-
tral reflectance data can be used to estimate crop yield (Panda
et al., 2010), detect variations in leaf area index (Brantley et al.,
2011), and characterize agricultural crop biophysical variables
(Thenkabail et al., 2000). They can also be used to detect and differ-
entiate plant diseases (Devadas et al., 2009). Different diseases are
often associated with specific physiological and visual changes of
their host plants. Proper SVIs offer a great advantage in the mining
of hyperspectral data. Hillnhütter et al. (2012) calculated nine
spectral vegetation indices from hyperspectral data to investigate
the influence of soil reflectance on the correlation between SVIs
and leaf symptoms caused by nematodes and non-sporulating
soil-borne fungi. The results showed that SVIs were closely corre-
lated with leaf symptoms, but the correlations were influenced
by soil reflectance. It was also found that the spectral angle mapper
(Zarco-Tejada et al., 2001) method had potential in disease
discrimination.

Most of the previous studies on detecting diseases caused by
Colletotrichum are usually carried out by destructive methods
(Chen et al., 2013; Debode et al., 2015; Raj et al., 2015). Few studies
have reported using non-destructive methods for such an applica-
tion under field conditions. The overall objective of this research
was to investigate the feasibility of detecting ACR in strawberry
at an early or asymptomatic stage under field conditions using
spectroscopy technology. The specific objectives were: (1) to
develop a field mobile data acquisition platform based on spec-
troscopy technology; (2) to evaluate various data classification
models on differentiating healthy, asymptomatic, and early stage
infected plants using selected SVIs; and (3) to compare the in-
field system performance with laboratory test results.

2. Materials and methods

2.1. Spectroradiometer

A high resolution portable spectroradiometer (SVC HR-1024,
Spectra Vista Corporation, Poughkeepsie, NY, USA) was used for
collecting reflectance data in the range of 350–2500 nm, with spec-
tral resolutions of less than or equal to 3.5, 9.5, and 6.5 nm for
wavelength ranges of 350–1000, 1000–1850, and 1850–2500 nm,
respectively. The spectral data were collected using a 4� field-of-
view lens at a minimum integration time of 4 ms. In order to
acquire the relative reflectance spectra of the sample, flat-field cor-
rection was automatically conducted by the proprietary sensor
control software using Eq. (1). The raw spectra (Rsample) were cali-
brated by white (Rreference) and dark correction (Rdark). The white
correction was acquired by a white reference panel (Spectralon
Reflectance Target, CSTM-SRT-99-100 Spectra Vista Corporation,
Poughkeepsie, NY, USA), and the dark correction was obtained by
covering the lens with a light-proof cap.

R ¼ Rsample � Rdark

Rreference � Rdark
ð1Þ

2.2. Data collection

2.2.1. Field data collection
Field experiments were conducted around solar noon on a com-

mercial strawberry farm located in Plant City, Florida, USA (Fig. 1).
Five commercial strawberry cultivars commonly grown in Florida
were included in this study: Sensation, Festival, Pilgrim, Radiance,
and Sanibel. Four plots were planted for each cultivar in a random-
ized block design; each plot contained 10 plants grown in double
rows, so there were 40 plants of each variety and 200 plants in
all. Thirty plants of each variety were inoculated with C. gloeospo-
rioides at early stages of growth. Several techniques for Col-
letotrichum disease inoculation were studied including dropping,
spraying, and spot techniques (Denoyes-Rothan and Guérin,
1996). Since the strawberry plants cover a large area in our field
experiment, the pathologists conducted the inoculation by spray-
ing the fungal solution (Chen et al., 2005b; Zhang, 2016). Consider-
ing the warm temperature (22–25 �C) in Florida during the
cultivation of the strawberry plants, pathologists did not use any

Fig. 1. Strawberry cultivation fields in Plant City, Florida.
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