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In this contribution, we present an automated approach to the phenotyping of grape bunches. To do so,
our method analyses high-resolution sensor data taken from grape bunches and generates complete 3D
reconstructions of the observed grape bunches. We extend a previous work from our group to earlier
development stages with mostly visible stem structure, using an enhanced pre-classification of the sen-
sor data into specific categories, i.e., berries and stems, yielding high precision and recall rates for the
reconstruction of the berries of more than 98% and 94%, respectively. The same quality of results can
be achieved by training a classification model on one grape bunch and applying it to the other grape
bunches. Furthermore, we describe important observations concerning parameter initialization and opti-
mization techniques resulting in a guideline for people working in the area.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction
1.1. Motivation

In this context, phenotypes refer to the set of observable traits
of a plant resulting from its genetic properties and interaction with
the environment. Measuring and evaluating these traits over time
(phenotyping) is required for the improvement of selection effi-
ciency in plant breeding and field management, predicting the
yield potential of different genotypes and investigating their stress
tolerance or disease resistance under different circumstances.

Manual phenotyping is widely recognized as a labour-intensive
and costly task resulting in the so-called “phenotyping bottleneck”
(Furbank and Tester, 2011). Therefore, several approaches to effi-
cient phenotyping have been proposed, most of them employing
automated analysis of image data (cf. Section 1.2). Recently, new
approaches using 3D data for automated phenotyping were intro-
duced (cf. Section 1.2). 3D data allows for automated reconstruc-
tion of complete 3D models of given plants or plant organs,
providing the opportunity to derive arbitrary phenotype traits in
a direct way in contrast to approximate estimations from 2D data
that hamper from low contrasts, perspective distortions, and a lar-
ger amount of occlusions (including self-occlusions) compared to
3D data, as missing parts of the plant cannot be recovered by
assuming a different viewpoint angle.

* Corresponding author.
E-mail address: mack@cs.uni-bonn.de (J. Mack).

http://dx.doi.org/10.1016/j.compag.2017.02.017
0168-1699/© 2017 Elsevier B.V. All rights reserved.

This article focuses on the automated phenotyping of grape
bunches, showing three contributions:

1. We summarize the state of the art of automated 3D reconstruc-
tion and phenotyping of grape bunches using 3D sensor data.

2. We show a complete 3D reconstruction and phenotyping pipe-
line for grape bunches using methods of machine learning and
object recognition.

3. We give practical advice on how to tune our automated recon-
struction and phenotyping pipeline.

This approach can be seen as a showcase for developers and
users for comprehensible parameter initialization and optimiza-
tion of software systems. We optimize all parameters in an under-
standable way by explaining them in terms of expected sizes of
plants and plant organs, whereas many software tools leave users
in the dark with so-called magic numbers.

Scholer and Steinhage (2015) presented a fully automated
approach to reconstruct grape bunch architecture in the develop-
ment stage BBCH89 with berries fully ripe for harvest. The first
step in their approach applies the Random Sample Consensus
(RANSAC) to detect and estimate position and size parameters of
the berries in the data set, followed by an optimization of a compo-
nent model of the plant architecture with respect to the input data
using the Reversible Jump Markov Chain Monte Carlo (RJMCMC)
algorithm. Given the reconstructed complete architecture of the
grape bunch, phenotype traits, e.g., from the OIV list
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(Organisation Internationale de la Vigne et du Vin, 2009), can be
derived.

We start with the earlier development stage BBCH73 with
groat-sized berries and mostly visible stem structure. Here, the
diameter of the stem structure on the one hand and the berries
on the other hand can be similar or even the same. While RANSAC
has been shown to be both efficient and robust even in noisy data
(Schnabel et al., 2007), under these circumstances we have to
expect to find a sufficient number of points supporting a sphere
placed inside the stem, leading to false detections of berries. There-
fore, we employ a classification of the laser-range measurements
included in a point cloud into surface points of berries or stems,
before using RANSAC to identify berries.

1.2. Related work

In this contribution, we interpret point clouds generated with a
3D laser-range sensor (cf. Section 2.1). There are alternatives for
the generation of 3D data, like, e.g., multi-view stereo vision as
done by Klodt and Cremers (2014).

The Fast-Point-Feature Histograms (FPFHs) developed by Rusu
et al. (2009) were used by Paulus et al. (2013) for the classification
of laser range data to estimate quantitative plant traits, like vol-
umes of plant organs. In this context, they also show their suitabil-
ity to differentiate between basic shapes, like spheres and
cylinders. Therefore, we apply FPFHs as descriptor for the classifi-
cation of laser-range measurements using a Support Vector
Machine (SVM, Vapnik, 1995) into surface points of berries (spher-
ical regions) or stems (cylindrical regions). Other than Paulus et al.
(2013), we aim at a precise 3D reconstruction of plant organs.
Wahabzada et al. (2015) suggest to replace the supervised classifi-
cation with an SVM with unsupervised clustering methods. This
would be applicable to our approach as well. Examples for super-
vised alternatives to SVMs are Random Forests or Ferns (Bosch
et al., 2007), but we choose SVMs for their robustness with respect
to noise and very efficient openly available implementations. It
would also be possible to refer to the 3D Hough Transform as used
by Rabbani and Van Den Heuvel (2005) for the detection of cylin-
ders in point clouds, but this is less efficient compared to RANSAC.
Conditional Neural Networks could be used to reconstruct spheres
from a point cloud in a single step, as done by Maturana and
Scherer (2015) for planes, but are harder to interpret and require
a large amount of training data.

Some studies derive the sizes of berries as one of the most
important traits in grapevine breeding (Kicherer et al.,, 2015;
Roscher et al., 2014) or estimate the fruit-to-leaf ratio using depth
maps to segment RGB data into leafs, stems, berries and back-
ground (Klodt et al., 2015). Others perform yield estimation based
on the detection of berries, as done by Nuske et al. (2014), Font
et al. (2014) and Liu et al. (2013), or inflorescences (Diago et al.,
2014) in images. Tello and Ibafiez (2014) developed an approach
for the automated estimation of the density of grape bunches eval-
uating indexes and applying image analysis to field or lab imagery.
Different ways to estimate the grape bunch density by sensor-
based approaches have been proposed: Cubero et al. (2015) mea-
sure the proportion of pixels in a bunch corresponding to berries,
rachis, and holes, while Ivorra et al. (2015) use the difference
between the convex hull of the bunch itself and its berries. None
of these studies aim at a complete reconstruction and only the
approach of Cubero et al. (2015) detects the rachis of a grape
bunch.

In contrast to these, we perform a complete reconstruction of
grapevine berries and stem structure of grape bunches from 3D
laser scanned point clouds in the context of high throughput plant
phenotyping, making use of the Fast-Point-Feature Histograms to
classify laser-range measurements with an SVM into points that

are part of the surface of either a berry or the stem. We group
the classified berry points into coherent regions (segments) using
region growing as segmentation method. Then we apply RANSAC
for berry detection to the resulting regions. Furthermore, we derive
all parameters, like support radii or thresholds, based on known
grapevine statistics and introduce initial results of a stem recon-
struction approach using the newly derived berries. With the com-
plete and detailed reconstruction it is possible to derive any known
descriptor and investigate new traits for the characterization of
grape bunches.

We use the Point Cloud Library (PCL, Rusu and Cousins, 2011)
implementations of FPFHs, region growing and RANSAC and the
PCL-Visualizer to provide screenshots. For the stem reconstruction
approach, we employ the Growth Grammar related Interactive Mod-
elling Platform (GroIMP, Hemmerling et al., 2008), a platform devel-
oped for the implementation of Relational Growth Grammars, and
the Grolmp-Visualizer to provide reconstruction screenshots.

2. Materials and methods

The overall workflow up to the step of berry reconstruction is
shown in Fig. 1. It consists of the following steps:

(a) Compute a Fast-Point-Feature Histogram descriptor for each
3D measurement of the laser scanned grape bunch, repre-
senting the surface properties at this measurement.

(b) Based on the FPFHs, classify the laser-range measurements
into surface points of a berry or a stem using an SVM model.

(c) Use a region growing approach to group the berry points
into coherent patches of berry surfaces, so-called segments.

(d) Repeatedly apply RANSAC to each berry segment to generate
berry hypotheses. Validate the berry hypotheses in a post-
processing step.

(e) The resulting berries can be used as input for further recon-
struction of the stem structure.

The next sections explain the steps in more detail.

Like most systems, our approach requires different parameters.
While they are introduced and explained for every step of the
workflow in the different parts of this section, Section 3.1 shows
a collection of all parameters in Table 1 and explains how to derive
and optimize their values, offering a blueprint for their practical
employment.

2.1. Plant material and sensor

We use 3D point clouds generated with a Perceptron Scan-
Works V5 (Perceptron Inc, 2016) attached to a Romer Infinite 2.0
articulated arm (Hexagon Metrology Inc, 2016). This sensor creates
7640 point measurements in lines at a frequency of 60 Hz with an
accuracy of 0.024 mm. While the sensor is moved around the
object, the sensor’s software collects the line measurements into
a single coordinate frame, resulting in a highly dense 3D point
cloud. We apply a voxelgrid filter with a voxel side length of
0.2 mm in each axis direction to the point cloud, reducing the
number of points from between 1.2 and 1.7 million to about 200
to 350 k and the overall running time from approximately 9000 s
to about 200s with Intel Core i7 CPU with 3.60 GHz and 8 GB
RAM averaged over the different instances.

We use five scanned grape bunches (called 22B, 23A, 23B, 24A
and 27B) of the cultivar Riesling (Vitis vinifera L.) in development
stage BBCH73 according to the BBCH classification. The typical
bunch size ranges between 7 and 13 cm, the berries are groat-
sized and most of the stem system is visible. We determined the
minimal and maximal berry radius of this development stage
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