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a b s t r a c t

Crop yield models can assist decision makers within any agro-industrial supply chain, even with regard to
decisions that are unrelated to the crop production. Considering the characteristics of the mechanisms
and data related to yield, data mining techniques are suitable candidates for modelling. The use of these
techniques within a context with feature engineering, feature selection, and proper tuning can further
improve performance beyond a simple replacement of multiple linear regression. To evaluate the impact
of the different steps in the mentioned context, we evaluated sugarcane (Saccharum spp.) yield modelling
with data obtained from a sugarcane mill. For a combination of six techniques, tuning, feature selection,
and feature engineering, leading to 66 combinations, we assessed final model performance. Average per-
formance across combinations resulted in a mean absolute error (MAE) of 6.42 Mg ha�1. Using different
techniques led to a range of MAE from 4.57 to 8.80 Mg ha�1 on average. The best and worst performances
for an individual model were MAEs of 4.11 and 9.00 Mg ha�1. Models with lower performance were close
to simply predicting yield from the average yield for each number of cuts (MAE of 9.86 Mg ha�1). Tuning
and feature engineering reduced the MAE on average by 1.17 and 0.64 Mg ha�1, respectively. Feature
selection removed nearly 40% of the features but increased the MAE by 0.19 Mg ha�1. The performance
of models was improved by simple strategies such as decomposing weather attributes and detailing fer-
tilisation. Evaluation of feature importance provided by the RReliefF feature selection algorithm was used
to explain the performance gains. If empirical models are needed, they will rely on using advanced
techniques, but they will need proper algorithm tuning and feature engineering to extract most of the
information from datasets. Based on the results, we recommend following the presented workflow for
the development of yield models.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Empirical sugarcane (Saccharum spp.) yield models, as for any
crop, can help several decision makers. Crop models coupled with
numerical weather prediction models may benefit whole value
chains in agricultural production if developed as part of an inter-
disciplinary and goal-oriented approach (Stone and Meinke,
2005). Considering the goal of decision making, models can be sim-
ply a functional relation between crop inputs and outputs. The use
of such models should be preferred over using averaged informa-
tion for planning purposes (Higgins et al., 2007), and estimations
should address the stochastic nature of those estimations over a
deterministic approach (Ahumada and Villalobos, 2009). Usually,
neither aspects are addressed in sugarcane production planning
(Bocca et al., 2015).

Modelling agricultural outputs as a function of its inputs is
often referred as empirical modelling, in opposition to the
mechanistic/process-based models such as APSIM (Keating et al.,
2003), DSSAT (Jones et al., 2003), CROPSYST (Stöckle et al., 2003),
WOFOST (Van Ittersum et al., 2003) or EPIC (Brisson et al., 2003),
in which different processes related to the plant development are
simulated for describing plant growth. Often the two approaches
are compared concerning their aims: empirical models are used
just to provide a straight answer to a specific need, usually at a
specific location, and mechanistic/process-based models are used
to explain and simulate crop development. Examples of process-
based models for sugarcane can be viewed in Marin and Jones
(2014) and Stokes et al. (2016). Empirical models are limited to
the scope of the data used in their creation, and process-based
models are limited to the scope where their processes are valid,
which is often considered a broader scope in comparison to empir-
ical based models. Regarding data requirements, empirical models
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are often considered alternatives to the more specific data require-
ments of mechanistic models.

Considering the typical data available in sugarcane mills (Lawes
and Lawn, 2005), the use of data mining techniques for empirical
modelling should be a natural decision: data mining techniques
are robust to noise, auto-correlation of features and can work with
different data types. These characteristics describe most of the
agricultural, soil, and weather data and their relations. While these
techniques bring some new capabilities, their application should
happen in a context where the model training/induction is only
one step. Examples of the full context are the academic formula-
tion of Knowledge Discovery in Databases (KDD) (Fayyad et al.,
1996) or the industrially focused Cross Industry Process for Data
Mining – CRISP-DM – and the ‘‘Sample, Explore, Modify, Model,
Assess” - SEMMA. Considering the analogy between these method-
ologies (Azevedo and Santos, 2008), this paper will focus on the
KDD terminology and context. For academic publications, steps1

like ‘‘understanding the domain”, ‘‘understanding the goal”, ‘‘creat-
ing the dataset”, and ‘‘data preprocessing” are implicit or the main
objective. But other steps of KDD might not be receiving the proper
attention. This paper will focus on two aspects of the fourth step,
‘‘data reduction and projection”, along with the methodology of data
mining (the sixth step), specifically:

� Feature selection (FS): feature importance evaluation and
selection.

� Feature engineering: the creation of features derived from orig-
inal features.

� Model tuning: searching for algorithm hyperparameters for bet-
ter performance.

To contextualise the effects of such practices in yield modelling,
13 papers were selected as a result of a non-comprehensive review,
focusing on papers in which machine learning/data mining tech-
niques were applied to yield modelling in the following context:
data related to the production is used to predict final yield.
Analysing the techniques used in the papers (Table 1), most
(10/13) used Artificial Neural Networks (ANN), often (4/13) includ-
ing Regression Trees (RT). Some papers (4/13) perform compar-
isons with Multiple Linear Regression (MLR), or some related
model such as regression with higher order polynomials (Alvarez,
2009) or Generalised Linear Models (GLM; Zheng et al., 2009).
ANN always performed better than GLM or MLR, which is expected,
given the higher modelling capacity of ANNs. RT was also better
than MLR and GLM, which is also expected. Other techniques were
only used in two papers, namely Random Forest (RF), Support
Vector Machines (SVM), Nearest Neighbour (kNN), M5-Prime,
and Radial Basis Function (RBF) network. Ruß (2009) showed a bet-
ter result for the SVM technique, followed closely by RBF. Since
Gonzalez-Sanchez et al. (2014) did not perform tuning consistently
across techniques, their results concerning which technique is bet-
ter are not useful. As Macià and Bernadó-Mansilla (2014) pointed
out, for benchmarking, all of the algorithms should be optimised
for a fair comparison. The authors also reinforce the ‘‘no free lunch”
theorem in machine learning for such comparisons, as the superi-
ority of an algorithm in a set of problems cannot be generalised. At
most, conclusions such as those reached by Fernández-Delgado
et al. (2014) regarding classification problems (discrete or categor-
ical labels) can lead to rules of thumb about techniques to

prioritise evaluations. From the analysis of a large body of datasets,
they show that RF is most likely the best classifier with no statis-
tical difference to SVM with Gaussian Kernel. From the perspective
of families of classifiers, the best families presented by the authors
are, in descending order, RF, SVM, ANN, Boosting Ensembles, and
C5. From these results, if model performance is the only goal, the
best practice is, therefore, to evaluate several techniques.

Data mining techniques were applied to model yield on differ-
ent scales from district scale (e.g. Alvarez, 2009; Matsumura
et al., 2014) to precision agriculture scale (Ruß, 2009) (see Table 2).
Most of the 13 studies focused on a single crop, and the data used
for modelling came from experiments (6). Automated FS (for every
algorithm) was only used by Alvarez (2009) with the conventional
approach of stepwise regression for FS. Zhang et al. (2005) per-
formed a Principal Components Analysis to transform data and
used stepwise FS for MLR. Explicitly manual FS was performed
by five out of thirteen papers, while one paper (Gonzalez-
Sanchez et al., 2014) performed an exhaustive search. The FS effect
can be negatively biased in this context. In most experiments con-
ducted, researchers collect data that are supposedly related to the
phenomenon of interest, given resource and/or time constraints on
the collection and analysis of data. The oriented collection of data
means that these kinds of datasets have only pre-approved fea-
tures. In the context of automated data collection, use of new sen-
sors, evaluation of different measures or timing, FS can have a
greater impact. In these cases, FS can enhance model quality by
discarding bogus features or simply decreasing the model and
computational complexity by keeping the most important features,
with one example being Ruß and Kruse (2010). Haghverdi et al.
(2014) performed sensitivity analysis to analyse the features of
neural networks but did not use this information to select features.
Examples of features engineered are the different aggregations for
weather data in Ji et al. (2007), Zhang et al. (2006), Kaul et al.
(2005) and Zhang et al. (2005) and fertilisation in Park et al.
(2005) and Matsumura et al. (2014). In the mentioned papers, fea-
ture engineering is evident and justified by agronomic knowledge,
but no paper presented an evaluation of feature importance before
deciding on the inclusion of created features.

Regarding the tuning procedures, most of the papers that used
ANN performed tuning for the neural network, often changing
the number of nodes and seeds for initialization. Overall (10/13),
the papers performed some tuning (Table 2). Zhang et al. (2005)
used a suggestion for tree parameters based on the dataset size.
Gonzalez-Sanchez et al. (2014) used different approaches for each
algorithm, from setting k equal to 5 in kNN and using topology
found in previous studies for ANN to manual testing and the values
from Ruß (2009) for SVM cost with a linear kernel. One paper
(Haghverdi et al., 2014) only tuned the ANN and not the RT.

1 The KDD steps presented by Fayyad et al. (1996) are: 1 – developing an
understanding of the application domain and understanding the goal, 2 – creating the
target data set, 3 – data cleaning and preprocessing, 4 – data reduction and projection,
5 – matching the goals of the KDD process (step 1) to a particular data-mining
method, 6 – exploratory analysis and model and hypothesis selection (model’s
parameters decisions are made in this step), 7 – data mining, 8 – interpreting mined
patterns and 9 – acting upon discovered knowledge.

Table 1
Techniques used in reviewed papers. The technique with the best performance in the
paper is marked with an asterisk.

Paper Technique

Kaul et al. (2005) ANN
Park et al. (2005) ANN⁄, RT, GLM
Zhang et al. (2005) RT
Zhang et al. (2006) RT⁄, MLR
Ji et al. (2007) ANN⁄, MLR
Alvarez (2009) ANN⁄, MLR (second order)
Ruß (2009) ANN, RBF, RT, SVM⁄

Zheng et al. (2009) RT⁄, GLM
Dai et al. (2011) ANN
Gonzalez-Sanchez et al. (2014) ANN, MLR, RT, SVM, kNN⁄, M5P⁄

Haghverdi et al. (2014) ANN⁄, RT
Matsumura et al. (2014) ANN⁄, MLR
Thuankaewsing et al. (2015) ANN
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