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a b s t r a c t

This paper presents a novel tree trunk detection algorithm that uses the Viola and Jones detector along
with a proposed pre-processing method, combined with tree trunk detection via depth information.
The proposed method tackles the issue of the high false positive rate when the Viola and Jones detector
is used on its own, due to the low contrast between tree trunks and the surrounding environment. The
pre-processing method uses colour space combination and segmentation to eliminate the ground not
covered by trees from the images and feeding the resulting image into a cascade detector for identifying
the location of the trunks in the image. Depth information is obtained via the use of the Microsoft KINECT
sensor to further increase the accuracy of the detector. Our proposed method had better performance
when compared to both Neural Network based and Support Vector Machine based detectors with a
detection rate of 91.7% and had the lowest false acceptance rate out of other detectors, including the orig-
inal Viola and Jones detector. The performance of the proposed method was also tested on live video
feeds with the use of a robot prototype in an oil-palm plantation, which proved the high accuracy of
the method, with a 97.8% detection rate. The inclusion of depth information resulted in more accurate
detections during low levels of light and at night, where reliance on pure depth information resulted
in a 100% detection rate of tree trunks within the range of the sensor.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Automation in agricultural processes is becoming more of a
necessity than a luxury in recent times. With the increase in
demand for manpower and the decline in seasonal labour, produc-
ers have no choice but to modernise their practices to avoid reduc-
tion of yields as well as overall profits. Automated agricultural
vehicles that cater to varied tasks such as weeding, pesticide appli-
cation, fruit harvesting and even tree pruning are on the rise to
meet the needs of the ever growing development in the field.

With the development of sensors and machine vision tech-
niques, several agricultural vehicles have been upgraded for auto-
mated navigation, harvesting and mapping of various sites.
Obtaining readings of the working region is a key criterion for
autonomous functionality, as this opens the way for object detec-
tion and mapping, both crucial processes to provide references
for navigation. Cameras provide a low cost solution for obtaining
information of the immediate environment by means of intensity
and colour data, while range sensors such as sonar and lasers are
used to obtain both 2 and 3 dimensional depth data.

The semi structured nature of orchards and plantations make
autonomous navigation possible with the use of basic machine
vision techniques and sensors. Using a planar laser scanner on a
mobile robot, row by row navigation can be carried out. In these
cases, the scanner is able to obtain range information of the trees
on both sides of the row, enabling the mobile robot to centre itself
and navigate to the end of the given row. Bayar et al. (2015) used a
planar range finder to align their robot to orchard rows, focusing
more on the row like arrangement than individual trees.
Gimenez et al. (2015) used similar methods, although their system
required prior knowledge of the absolute points of the end trees of
the rows.

Although obtaining range information from planar sensors is
useful for knowing the distances to obstacles and trees, they do
not provide sufficient data for creating a good reconstruction of a
given area by themselves. In certain cases, planar data is not suffi-
cient to detect obstacles, leading to the need of more range data to
make accurate assessments. As a result, the use of 2D LIDAR sen-
sors to obtain 3D point clouds has increased in popularity in recent
years. Given the high number of data points for each square meter,
complete scene reconstruction is entirely possible, leading to
higher chances of accurate detections. Sanz et al. (2013) used a
2D terrestrial LIDAR scanner for characterising tree crops by scan-
ning each row on both sides via a tractor mounted sensor to obtain
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two 3D point clouds. The obtained data enabled them to calculate
accurate leaf area density of the present trees. Similar work was
done by Rosell et al. (2009) to obtain large amounts of plant infor-
mation, giving a high correlation coefficient of 0.976 between trees
reconstructed using data points and manual measurements.
Forsman and Halme (2005) displayed the use of dense range
images to reconstruct trees by representing them as cylindrical
columns in scans of large scale environments. Their reasoning
being that accurate mapping would enable virtual testing of forest
working machines. Zhang et al. (2014) used a 2D LIDAR to generate
maps of orchards to simplify autonomous navigation. Their system
required marked posts as artificial landmarks for better judgement
of row ends, producing results with only 19–26 cm mean distance
error.

Other research has used machine vision techniques for identifi-
cation in agricultural environments, even without the use of sen-
sors. Auat Cheein et al. (2011) tackled precision agriculture
mapping with the use of support vector machines (SVMs) for
detecting olive stems from images obtained via a monocular vision
system. Once the trees were detected by the system, a laser range
sensor was used to give the distance of the stem to the robot. The
absence of weeds and a clear contrast between the ground and the
trunks made the use of a pure vision based system suitable for this
scenario. Lu and Rasmussen (2011) used an omnidirectional cam-
era and contrast templates to detect tree trunks by relying on
the attribute where trunks appear as straight lines with a high con-
trast at both sides. Shao et al. (2014a) used colour features of the
trunk from the L ⁄ a ⁄ b colour space as well as shape features by
means of the Hough transform to detect trees. Shao et al.
(2014b) furthered their work with the addition of a back propaga-
tion neural network to segment the colour marks from the L ⁄ a ⁄ b
colour space before performing the Hough Transform. Torres-
Sospedra and Nebot (2014) used artificial neural networks for the
detection of weeds in orange groves enabling their system to
detect weeds with a very high performance rating.

Though there are several systems that make use of sensors or
cameras by themselves, certain environments/situations require
more data than either can provide individually. The solution for
these cases is to make a system that combines the information
obtained from both sensors and cameras so that the lack of infor-
mation from one input is made up by the other. Jaakkola et al.
(2010) worked with a multi sensorial system for mobile mapping,
though their method was unable to distinguish between trees and
other pole type objects. Zhong et al. (2013) used sensors along with
a CCD panoramic camera to incorporate texture information into
the reconstruction of the 3D model of the environment. Shalal
et al. (2015a) were able to detect trunks with 96.6% accuracy with
the use of a camera and laser scanner, similar to the previous sys-
tems, highlighting the advantage of using multiple input devices
for increased detection accuracy. They predicted that although
their system had high accuracy in the orchard, it might have poor
results if the trunks were occluded with leaves/fauna. They fur-
thered their work by using the tree detector for mapping and local-
isation by using the trunks as key points in the map (Shalal et al.,
2015b).

With the introduction of the Microsoft XBOX KINECT sensor
that incorporates both vision and depth inputs, the possibilities
of its usage for research purposes have increased over the recent
years. Though mainly used for indoor applications due to the inter-
ference of natural light with the infrared light used by the depth
sensor, there are a few cases where it has been used in outdoor/
agricultural settings. Nissimov et al. (2015) used the KINECT in a
greenhouse environment for obstacle detection via the use of
depth and colour information. The slope of the environment ahead
was calculated using depth data and if the slope was too large to be
classified as ground, colour and texture features were used to

classify the obstacle into various categories. Though not in an agri-
cultural setting, Arnay et al. (2016) used the KINECT for obstacle
detection outdoors for autonomous vehicle navigation. They man-
aged to circumvent the problem of natural light by placing the
KINECT close to the ground and tilting it to face at a downward
angle, reducing the chances of interference and focusing on the
obstacles at close quarters.

This paper deals with the detection of tree trunks in an oil-palm
plantation to enable further work to be done in creating a naviga-
tion system capable of operating within the area autonomously.
Though several works have been done in orchards and other plan-
tation settings, this is the first to focus on oil-palm plantations with
robot navigation in mind. In the plantation, though the environ-
ment is relatively structured, inconsistent gaps between trees
and landscape variations lead to differing distances between plots
and the number of trees within them. These factors, along with the
size of the land to be covered as well as the changing landscape due
to bush growth and fallen trees/branches, eliminate the use of pre-
programmed methods. This leads to the need of an automated sys-
tem capable of detecting trees as key points for navigation as they
are the main point of interest. The focus of this work was to pro-
duce a detector with high accuracy while keeping the costs as
low as possible to make it a more realistic prototype that could
be used by regular plantation owners.

We propose a novel pre-processing method focused on reducing
the image size to the area we assumed to have trees which is then
fed into the detector for further processing. The method works by
using colour space combination to enhance the contrast between
the ground and other objects and then cropping the image to
remove ground areas. Varying lighting conditions and the low con-
trast between tree trunks and the background in visual informa-
tion made the use of other sensory information a necessity for
improving the accuracy of the system. In keeping to low costs,
the KINECT sensor was used for obtaining video input as well as
depth information, instead of having two separate systems as
inputs. The detector used on the video input was created by
Viola and Jones (2001), chosen for its cascade nature, which elim-
inates unlikely inputs in the early stages of the cascade. Further-
more, the depth data from the KINECT was used in tandem with
the detector to enable more accurate detections. This paper is the
first to investigate the use of KINECT’s depth data in tree trunk
detection performance in an oil-palm plantation environment.
The proposed system was tested out in the field with the use of a
mobile robot designed to navigate and collect data in an oil-palm
plantation.

The remainder of the paper is divided as follows. Section 2
describes the plantation that the work was focused on and the
properties as well as challenges expected from such an environ-
ment. The methodology with which the robot was designed is cov-
ered in Section 3 while plantation data obtained and the workings
of the proposed system are mentioned in Section 4. Results are dis-
played and discussed in Section 5. The work done is concluded in
Section 6.

2. Study of the plantation

The Balau Estate oil-palm plantation in Broga, Malaysia, was
used to collect data as well as test the detector. In the plantation,
trees were planted in square plots of 20 � 20 trees, with a distance
of 8.8 m between each tree, where every 3 adjoining trees form a
triangle. The layout was similar to arranging them in parallel rows,
with a distance of about 7.8 m between each row (Fig. 1(a)).
Branches that are cut as well as fallen/felled tree trunks are placed
in the middle of rows so that they may decompose and add nutri-
ents to the soil. Field paths exist between each square plot, where
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