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a b s t r a c t

While ecological succession shapes contemporary forest structure and dynamics, other factors like forest
structure (dense vs. sparse canopies) and climate may alter structural trajectories. To assess potential
sources of variation in structural trajectories, we examined proportional biomass change for a regionally
dominant tree species, Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), across vegetation zones
representing broad gradients in precipitation and temperature with 3510 forest inventory plots in
Oregon and Washington, USA. We found that P. menziesii biomass change decreased with P. menziesii
biomass stocks and increased with P. menziesii density, remaining positive in older stands only in the
wet and warm vegetation zone. Within two of the vegetation zones, biomass change was greatest in
warm and wet environments. In dry vegetation zones, positive P. menziesii biomass change responses
to initial canopy cover and canopy cover change (i.e., increases with cover loss and decreases with cover
gain) indicated shifts in forest structure. Variation in P. menziesii biomass dynamics within and between
vegetation zones imply multi-scale climatic controls on forest structural trajectories for P. menziesii and
highlight the potential for continued atmospheric carbon sequestration in warm and wet forests of the
Pacific Northwest for both young and old forests, given that future climatic conditions support similar
forest dynamics.

Published by Elsevier B.V.

1. Introduction

Whether through growth, mortality, or recruitment, forests are
constantly changing, defining one of the key challenges in forest
ecosystem ecology: understanding forest biomass dynamics
throughout forest development. Models of forest succession pro-
vide an appealing conceptual framework for understanding forest
dynamics and biomass change through time (e.g.; Odum, 1969),
but agreement on models and mechanisms has eluded ecologists
(Pickett et al., 1987; Taylor et al., 2009). In addition, the effects of
density-dependent mechanisms (Connell, 1971; Janzen, 1970),
resource availability (Harpole et al., 2011), and disturbance
(Connell and Slatyer, 1977) are major determinants of plant suc-
cession, and thus vegetation structural development. The strength
and effect of such mechanisms will vary by species, in some cases
dwarfing the impacts of time upon which successional theory is at
least implicitly based (Chen and Taylor, 2012). Geographic varia-
tion in tree species responses to successional drivers must be

understood to improve our understanding of biomass change
dynamics.

The successional role of some species differs in different vegeta-
tion types, possibly due to competition with other species in the
community or species vigor and tolerance in different climatic
and edaphic conditions (Anderson-Teixeira et al., 2013;
Daubenmire, 1966). Geographic distributions of shade tolerance
roughly map to moisture gradients, with the abundance of shade-
tolerant species being positively correlated with precipitation and
negatively correlated with temperature (Lienard et al., 2015) with
shade-tolerant species often defining climax vegetation types in
many forest ecosystems (e.g.; Franklin and Dyrness, 1973). When
disturbances are infrequent, shade-tolerant, late-successional tree
species slowly take the place of shade-intolerant, early-
successional species over the course of forest succession (Oliver,
1981). However, the consequences of an individual species’ shade
tolerance on its growth and survival depend on the plant commu-
nity with which that species must compete (e.g.; Nagel et al.,
2013). The change in species abundance or biomass throughout for-
est development, hereafter structural trajectories, will depend on
many factors, including other forest structure characteristics (e.g.,
open vs. closed canopy) and climatic controls on ecosystem
function (Reilly and Spies, 2015).
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In this study, we assessed biomass responses of a regionally
dominant tree species, Pseudotsuga menziesii (Mirb.) Franco
(Douglas-fir), to differing structural and environmental conditions
across four vegetation zones in Oregon and Washington, USA
(hereafter, the Pacific Northwest). Specifically, we examined the
responses of proportional P. menziesii biomass change to structural
status, forest canopy status, and climate across an elevational and
longitudinal gradient in the Pacific Northwest. Our objective was to
assess the consistency (i.e., equivalence between vegetation zones)
and conditionality (i.e., interaction effects) of biomass change
responses in the dominant species, P. menziesii, across the region
using repeated measurements of 3510 forest inventory plots. We
hypothesized that P. menziesii biomass change will decline as
forest development progresses across all vegetation zones,
but that key transitions in ecosystem behavior, such as the
transition from positive to negative biomass change, will differ
substantially.

2. Materials and methods

2.1. Study region and forest inventory data

Our study region covered the 9.1 million ha of forested federal
land administered by the Pacific Northwest (PNW) Region of the
National Forest System (NFS), located in the Pacific Northwest
(Fig. 1). For the purposes of this study, we chose four potential
(‘‘climax”) vegetation zones as classified by field crews using local
guides (Hall, 1998): Abies amabilis (Pacific silver fir) zone (ABAM),
Abies concolor (white fir) and Abies grandis (grand fir) zones com-
bined (ABCOGR), P. menziesii zone (PSME), and Tsuga heterophylla
(western hemlock) and Picea sitchensis (Sitka spruce) zones
combined (TSHEPISI). These four vegetation zones were chosen
to represent the elevational gradient controlling temperature
(i.e., the cooler high-elevation subalpine forests vs. the warmer
low-elevation montane forests) and a latitudinal gradient control-
ling moisture (i.e., the wetter western flank of the Cascade Moun-
tains vs. the drier eastern flank of the Cascade Mountains). While
there is substantial overlap between vegetation zones in climate
space, examination of the first two components of a principal com-
ponents analysis of 14 temperature and precipitation variables
(sensu; Lintz et al., 2013) support our use of these vegetation zones
as proxies for broad temperature and moisture gradients (Fig. A.1).
The ABAM zone is generally located at middle elevations
(mean = 1140 m in our dataset) west of the Cascade Mountain
crest, has mean annual temperature and precipitation equal to
5.8 �C (4.6–6.9 �C for 68% percentile interval) and 2360 mm
(1877–2842 mm for 68% percentile interval), and is dominated
by A. amabilis, P. menziesii, and T. heterophylla, with smaller compo-
nents of Abies procera (noble fir), Thuja plicata (western red-cedar)
and Tsuga mertensiana (mountain hemlock). The ABCOGR zone is
generally located at high elevations (mean = 1480 m) east of the
Cascade crest, has mean annual temperature and precipitation
equal to 5.5 �C (4.0–6.9 �C for 68% percentile interval) and
977 mm (626–1411 mm for 68% percentile interval), and is domi-
nated by A. concolor, A. grandis, Pinus ponderosa (ponderosa pine),
and P. menziesii, with smaller components Larix occidentalis (west-
ern larch) and Pinus contorta (lodgepole pine). The PSME zone is
generally located at middle elevations (mean = 1200 m) east of
the Cascade crest, has mean annual temperature and precipitation
equal to 6.2 �C (4.4–8.4 �C for 68% percentile interval) and 895 mm
(555–1304 mm for 68% percentile interval), and is dominated by P.
ponderosa and P. menziesii. The TSHEPISI zone is generally located
at low elevations (mean = 750 m) west of the Cascade crest, has
mean annual temperature and precipitation equal to 7.9 �C

(6.2–10.0 �C for 68% percentile interval) and 2006 mm (1415–
2528 mm for 68% percentile interval), and is dominated by
P. menziesii and T. heterophylla, with smaller components Alnus rubra
(red alder) and T. plicata.

Our study was based on extensive inventory of plots measured
for change on NFS lands in the PNW Region using a probability-
based sample design (Max et al., 1996). Although change data for
private and state lands also exist in the region, intensive manage-
ment of those lands results in the majority of stands being in the
earliest forest development stages (Gray et al., 2014). Plots were
established using the Current Vegetation Survey (CVS) design
(Max et al., 1996) between 1993 and 1997 (‘‘time 1”) and remea-
sured between 1997 and 2007 (‘‘time 2”) in four spatially- and
temporally-balanced panels. The CVS plot remeasurement period
ranged from 1 to 14 years with a mean of 7.1 years. To avoid high
sample errors associated with estimating annual rates of change
from short remeasurement periods on small numbers of plots,
we only used plots from the last three panels, which were remea-
sured more than 2 years after establishment. The same grid of
points was also measured with the nationally-standardized Forest
Inventory and Analysis (FIA) design starting in 2001 (Bechtold and
Patterson, 2005); we applied the FIA land classification distin-
guishing forest from non-forest to the CVS data used in this study.
We selected those CVS plots that (1) were associated with the four
vegetation zones (Fig. 1), (2) had P. menziesii as an important com-
ponent of the stand (i.e., >10% of the biomass and >10 trees ha�1),
(3) did not experience fire, harvesting, or other stand replacing
disturbance during the measurement interval, and (4) were at least

Fig. 1. Map of vegetation zones for study region. ABAM zone (n = 330); ABCOGR
zone (n = 869); PSME zone (n = 948); TSHEPISI zone (n = 1363).
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