Applied Thermal Engineering 73 (2014) 1501-1509

Contents lists available at ScienceDirect

Applied Thermal Engineering

journal homepage: www.elsevier.com/locate/apthermeng

Experimental and numerical study of CO₂ adsorption on Ni/DOBDC metal-organic framework

H. Wang ^a, Z.G. Qu ^{a, *}, W. Zhang ^b, Y.X. Chang ^b, Y.L. He ^a

^a MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
^b School of Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China

HIGHLIGHTS

• Amount and heat of CO₂ adsorption were experimentally and numerically studied.

• Formation of CO₂ adsorption was revealed at molecule level.

• Selectivity of CO₂/CH₄ was sensitive to the pressure and temperature.

• Electronic interactions played leading role in the selectivity.

ARTICLE INFO

Article history: Received 14 January 2014 Received in revised form 4 May 2014 Accepted 7 May 2014 Available online 6 June 2014

Keywords: CCS Ni/DOBDC GCMC CO₂/CH₄ Electronic contribution

ABSTRACT

Metal-organic frameworks show promising applications for carbon capture and storage. In this research, CO_2 adsorption on a Ni/DOBDC metal-organic framework was experimentally studied at a pressure range of 0 kPa–100 kPa and a temperature range of 25 °C–115 °C. The adsorption of CO_2 and selectivity for CO_2/CH_4 were also numerically examined through the grand canonical Monte Carlo method. The adsorbed amount increased significantly at the initial stage and then rose in a steady manner with increased pressure. In contrast, the isosteric heat of adsorption gradually decreased. As the temperature increased, the adsorbed amount decreased linearly, but the isosteric heat of adsorption remained nearly unchanged. The sites and density profiles of the adsorbate provided insight into the formed Ni^{2+…}O=C=O at the molecular level. The selectivity for CO_2/CH_4 was sensitive to pressure and temperature. The electronic contribution could reach 62.0%–68.3% in the 0 kPa–100 kPa pressure range and 40.7%–68.3% in the 25 °C –115 °C temperature range.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Carbon dioxide capture and storage (CCS) is a promising technique for solving the problem of global warming [1]. Adsorption by porous materials, such as zeolites [2], active carbons [3], and modified porous media [4], is an energetic and efficient approach among the proposed CCS schemes. A novel kind of nanoporous materials called metal-organic frameworks (MOFs) have drawn considerable interest because of their large specific surface area, high selectivity, and adjustable chemical functionality. A series of MOFs have been explored in CCS [5], and they were observed to exhibit higher adsorption capacity than traditional porous materials.

* Corresponding author. Tel./fax: +86 029 82668543. *E-mail address*: zgqu@mail.xjtu.edu.cn (Z.G. Qu).

http://dx.doi.org/10.1016/j.applthermaleng.2014.05.099 1359-4311/© 2014 Elsevier Ltd. All rights reserved.

Ni/DOBDC was first synthesized as a typical MOF by Dietzel et al. [6]. It consists of a hexagonal packing of helical O₅Ni chains connected by 2, 5-dihydroxyterephthalte linkers. The dimension of the 1-D parallel hexagonal channels is approximately 1.1 nm. Ni/ DOBDC has high stability, large CO₂ capacity, and long-term storage capability [7]. Liu et al. [8] demonstrated that Ni/DOBDC shows high CO₂ capacity at 10 kPa and 25 °C. Dietzel et al. [9] found that the high CO₂ adsorption capacity of Ni/DOBDC is due to the unsaturated metal centers. Kizzie et al. [10] observed that Ni/DOBDC retains approximately 60% of its initial capacity under dry condition after H₂O breakthrough. In addition to experimental studies, computer simulation is also employed to explore the microscopic adsorption mechanism on MOFs. Grand canonical Monte Carlo (GCMC) simulations are extensively used for this purpose. Ding et al. [11] used GCMC to show that Ni/DOBDC tolerates the effect of SO₂ very well at 25 °C and that SO₂ increases CO₂ uptake at low percentages of SO_2 (0%–4%) and decreases CO_2 uptake at high

Nomenclature		U _{ij} ,U _{ff} ,U _{fs} interaction energy (kJ)	
		$U_{\rm m}$, $U_{\rm n}$	the energy of the configurations n and m (kJ)
EC (%)	electrostatic contribution	V	the volume of simulation box(m ³)
f	fugacity (kPa)	V _{free}	free volume (m ³)
h	Planck' constant	x	mole fraction in adsorbed phase
k	Boltzmann constant (J K ⁻¹)	у	mole fraction in bulk phase
т	molecular mass (kg)	β	the factor
Ma	relative molecular mass of adsorbate	μ	chemical potential (kJ mol ⁻¹)
Ms	the relative molecular mass of single crystal cell	ε_{ij}	LJ depth (K)
N _m , N _n	number of adsorbed molecules	ε_0	dielectric constant (F m ⁻¹)
Na	the number of the structure cell	$\sigma_{ij}, \sigma_{\text{Dreiding}}$ LJ diameter (Å)	
N _A	Avogadro's constant	<>	ensemble average
N _{ex}	excess amount (mol kg^{-1})	Λ	thermal de Broglie wavelength
N _{with}	amount of adsorption with electrostatic interactions	ρ	bulk density (kg m ^{-3})
	switched on (mol kg^{-1})		
Nwithout	amount of adsorption with electrostatic interactions	Superscript	
	switched off (mol kg^{-1})	+, -	insertion and deletion
Р	pressure (kPa)		
p^*	acceptance probability	Subscript	
q	charge of the interacting atoms (e)	m, n	configuration m, n
Q _{st}	isosteric heat of adsorption (kJ mol ⁻¹)	Dreiding	g Dreiding force field
r _{ij}	the distance between atoms i and j (Å)	ex	excess
R	gas constant (J mol ^{-1} K ^{-1})	ff	adsorbate-adsorbate
S	selectivity	fs	adsorbate—adsorbent
Т	temperature (°C)	i, j	atom i, j

percentages. Peralta et al. [12] posited that xylene adsorption on Ni/ DOBDC is enhanced by electrostatic effects; however, this is not mainly important because the geometry of the pore does not allow a close approach of the adsorbate molecules toward the metal node.

Adsorption separation is a physisorptive operation controlled by a thermodynamic equilibrium process, which is usually used to characterize the performance of a porous material. Yang et al. [13] found that geometry and pore size affect the separation characteristics of MOFs significantly. Taking MOF-5 and Cu-benzenetricarboxylate (Cu-BTC) as examples, the electrostatic interactions can enhance the separation efficiency of gas mixtures (CO₂/CH₄). Liu et al. [14] demonstrated that the electrostatic interactions can enhance the separation of CO₂/CH₄ by ZIFs at a pressure range of 0 MPa-3.0 MPa, and ZIF-69 is more beneficial in separating CO₂ from a gas mixture compared with ZIF-68 because of the presence of chlorine atoms in the former.

The aforementioned experimental studies mainly considered the effect of pressure at fixed-point temperature on the amount of adsorption and hardly considered the isosteric heat of adsorption and varied temperature from experiment and simulation. Thus, in the present study, the amount of adsorbed CO_2 and the corresponding isosteric heat of adsorption on Ni/DODBC were investigated by experiment and GCMC simulation by correction parameters at different pressures and temperatures. The position and density of the adsorbate were also studied to understand the process of adsorption. The effect of the electrostatic interactions on the selectivity of CO_2/CH_4 was also considered.

2. Experimental study

Ni/DOBDC was synthesized according to a procedure reported by Liu et al. [7]. The structure and as-synthesized sample are shown in Fig. 1. Fig. 2 shows a schematic diagram of the test apparatus consisting of four parts, namely, adsorption, calorimetric, gas supply, and data acquisition systems. PCTProE&E combined with Calvet calorimeter (PCT and C80, French) constituted the adsorption and calorimetric systems. The amount and heat of adsorption were synchronously determined by the PCTProE&E-Calvet calorimeter system. Based on the static volumetric measurement, the pressure, temperature, and volume measurements were recorded to

٦

(a) Structure of Ni/DODBC. Ni atoms: blue sphere; O atoms: red sphere;

C atoms: gray sphere; H atoms: white sphere

(b) SEM of Ni/DOBDC Fig. 1. Structure and SEM of Ni/DOBDC.

Download English Version:

https://daneshyari.com/en/article/646069

Download Persian Version:

https://daneshyari.com/article/646069

Daneshyari.com