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1. Introduction

The broad topic for this paper is likelihood ratio (LR)
calculations in kinship cases. For most practical problems faced
by caseworkers, there is software available that can calculate the
required LRs. There are, however, some exceptions motivating this
paper. We restrict attention to problems involving two individuals,
so–called pairwise cases. This is a relevant class of problems to
study for several reasons and lends itself to exact expressions. Our
focus is beyond the standard applications and typically involves
one or more of the following complicating factors: (i) large
pedigrees, (ii) mutations, recently discussed in [10], (iii) population
stratification [1], and (iv) silent alleles. Available software
including Familias [7,3] fail to calculate LR for large pedigrees
with marriage loops. One example is shown in Fig. 1. Two remotely
related individuals share a rare allele denoted 1. This is a case of
some independent interest as it addresses the question: What is
the statistical evidence from a rare variant? As there is a large

number of meioses, it is hard to justify not modelling mutations. In
addition, the frequency of the allele or haplotype may be in the
order of magnitude of the mutation rate.

We present a formula for general pairwise cases accomodating
all mentioned complicating factors as well as freely available
software. This formula is also relevant as it may be used to check
software and precisely define the limitations of currently available
implementations. In addition, with a general formula, it is possible
to estimate parameters optimally using the maximum likelihood
method and also better understand how parameters describing,
say, mutations and population stratification influence results.

2. Methods

We consider general non-inbred pairwise cases as described by
the IBD (Identical By Descent) parameter k = (k0, k1, k2). An allele in
one individual is IBD to an allele in another individual if it comes
from the same ancestral allele within the pedigree. The probability
that two individuals share i alleles IBD is ki. Obviously
k0 + k1 + k2 = 1 in addition to k2

1�4k0k2 proved in [13]. We first
review some useful formulae for the LRs for pairwise relationships.
Thereafter these results are generalized.
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A B S T R A C T

Some practical and theoretical aspects of evaluation of evidence based on the likelihood ratio (LR) in

kinship cases are discussed. If relationships are complex or if complicating factors like mutation,

correction for population structure or silent alleles need to be accounted for, available software may fail.

We present an explicit general formula for non-inbred pairwise cases. Equipped with this formula it is

possible to evaluate, say, how strongly a shared rare allele, points towards a specific relationship.

Moreover, a general expression as the one presented, adds to the understanding of models and the

underlying biological mechanisms. It is also useful for checking software and defining the limitations of

programs. Some ideas for improving software may also be generated by the derivation of exact

expressions.

We argue that a proportional mutation model is well suited from a pragmatic point of view and derive

some theoretical properties of this model. Several examples based on the general pairwise formula and

its implementation in the freely available R package mut are presented.
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2.1. Mutations not possible

As shown in [14, p. 42], the likelihood function for one marker
can be written

LðkÞ ¼ k0PðGjI ¼ 0Þ þ k1PðGjI ¼ 1Þ þ k2PðGjI ¼ 2Þ (2.1)

where G :¼ (g1, g2) are the genotypes. I denotes the number of IBD
alleles and 0, 1 and 2 correspond to ‘‘unrelated’’,‘‘parent offspring’’,
and ‘‘monozygotic twins’’ respectively. The dependence on g1 and
g2 and the corresponding frequencies pg1

and pg2
is omitted in the

notation L(k).
The LR for relatedness with IBD coefficients (k0, k1, k2)

compared to unrelated is presented in [11] and can be written

LRðGÞ ¼ k0 þ k1
PðGjI ¼ 1Þ
PðGjI ¼ 0Þþk2

PðGjI ¼ 2Þ
PðGjI ¼ 0Þ

¼ k0 þ k1PIðGÞ þ k21ðg1 ¼ g2Þ
1

pg1

(2.2)

using (2.1) where PI abbreviates paternity index, and 1ðg1 ¼ g2Þ ¼
1 if g1 = g2 and 0 otherwise.

2.2. General paternity case

We next discuss how mutation, theta correction and silent
alleles are all taken care of in a general formula for the PI.

2.2.1. Mutation

The paternity index for a parent with genotype g1 = a/b and a
child with genotype g2 = c/d, where the alleles may or may not
differ, equals [9]

PIðg1; g2;MÞ ¼
2�1ða¼bÞ�1ðc¼dÞpapb ðmac þmbcÞpd þ ðmad þmbdÞpcð Þ

2�1ða¼bÞ�1ðc¼dÞ4papbpcpd

(2.3)

¼ 1

4

ðmac þmbcÞpd þ ðmad þmbdÞpc

pcpd

: (2.4)

Here mij denotes the probability that allele i ends up as j. With
0 mutation rate, mij ¼ 1ði ¼ jÞ. The first expression is from the
derivation of (2.4) in [3, pp. 173–174]. The numerator and

denominator of (2.3) are the likelihoods for the two hypotheses
and they will be needed below. Parent-child relationships are
examples of pairwise cases and are referred to as ‘‘duo cases’’
below.

Example 2.1. Consider a duo case and assume mutations are not
possible. Without loss of generality we can consider a marker with
four alleles denoted 1, 2, 3, 4 and so for instance m11 = 1 while
m12 = 0. Consider first three paternity examples. If the individuals
are heterozygous sharing no, one or both alleles Eq. (2.4) gives

PIð1=2;3=4Þ ¼ 0; PIð1=2;1=3Þ ¼ 1

4p1
;

PIð1=2;1=2Þ ¼ p1 þ p2

4p1p2
:

(2.5)

Likelihood ratios comparing any non-inbred pairwise relationship
to unrelated for the same genotype data are found by inserting the
paternity indices into (2.2) as exemplified below for full–sibs
(k0 = 0.25, k1 = 0.5, k2 = 0.25). The numerical values are for p1 = 0.1,
p2 = 0.2, p3 = 0.3 and p4 = 0.4 .

LRð1=2;3=4Þ ¼ 0:25þ 0:5�0þ 0:25�0� 1

2p1p2

¼ 0:25;

LRð1=2;1=3Þ ¼ 0:25þ 0:5� 1

4p1

þ0:25�0� 1

2p1p2

¼ 1:5;

LRð1=2;1=2Þ ¼ 0:25þ 0:5� p1 þ p2

4p1p2
þ0:25�1� 1

2p1p2
¼ 8:375:

Example 2.2. A father and a son are missing and biological samples
A and B have been genotyped from two bodies. If this is a parent
child relationship, we do not know if A is from the father and B from
the son or the other way around. We consider the hypotheses

H1: The bodies correspond to individuals related as father and son.
H2: The bodies correspond to unrelated individuals.
Consider, for simplicity, a SNP marker with alleles 1 and 2, and
frequencies p1 and p2 = 1 � p1, for which we observe 1/1 in sample A

and 2/2 in B. With the simplifying assumptions (no genotyping errors,
no drop-out, no silent alleles, no mutations) the likelihood ratio for
this marker would be 0. If, on the other hand we allow for mutations,
the LR will be greater than 0 and the overall LR based on all markers
may exceed stipulated thresholds for declaring paternity. Assume
there is a probability m12 of a mutation from 1 to 2 while m21 is the
probability from 2 to 1. From (2.4) follows LRAB = m12/p2 if A is the
father of B, while if B is the father of A, LR

[13_TD$DIFF]BA = m21/p1 and thus the
likelihoods ratios may differ substantially. For instance if
m12 = m21 = R, p1 = p, p2 = 1 � p, we find that the ratio of the LRs is

LRAB

LRBA
¼ p

1�p

which equals 1 only when p = 0.5. If for instance, p = 0.8, the ratio is
4 and in other words the likelihood ratio is 4 times larger if we
assume A to be the father of B compared to the alternative. In cases
where there is no information on the order of A and B, we have
encountered a practical problem. In this paper we describe a
practical mathematical solution to the problem: We use a mutation
model that guarantees

LRAB ¼ LRBA; i:e:; the LR is unchanged

if genotypes are swapped:

(2.6)

Throughout we refer to the latter equality as the swap

property. Observe that (2.6)[14_TD$DIFF] above is equivalent to

p1m12 ¼ p2m21

[(Fig._1)TD$FIG]

Fig. 1. The boys 23 and 25 are double third cousins. There is a marriage loop: the

second cousins 16 and 24 have children with respectively the second cousins 17 and

22. The pedigree is included as an example which is beyond the reach of forensic

software we know, but which computes easily with the approach of the present

paper also when mutation and theta correction are accounted for.
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