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A B S T R A C T

Green roofs offer the possibility to mitigate multiple environmental issues in an urban envi-
ronment. A common benefit attributed to green roofs is the temperature reduction through
evaporation. This study focuses on evaluating the effect that evaporative cooling has on out-
door air temperatures in an urban environment. An established urban energy balance model
was modified to quantify the cooling potential of green roofs and study the scalability of this
mitigation strategy. Simulations were performed for different climates and urban geometries,
with varying soil moisture content, green roof fraction and urban surface layer thickness. All
simulations show a linear relationship between surface layer temperature reduction DTs and
domain averaged evaporation rates from vegetation mmW, i.e. DTs = eW • mmW, where eW

is the evaporative cooling potential with a value of ∼−0.35 Kdaymm−1. This relationship is
independent of the method by which water is supplied. We also derive a simple algebraic
relation for eW using a Taylor series expansion.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The fast growth of global population, mainly in urban areas (UNFPA, 2012) and the concurrent increase in likelihood of
extreme weather events (IPCC, 2014) force cities to prepare for water scarcity and heat spells. The fact that cities are several
degrees warmer than the surrounding rural environment, known as the urban heat island effect, amplifies this risk (Rosenzweig
et al., 2015). Simultaneously, heavy precipitation and flooding are expected to become more likely in many European cities
(Rojas et al., 2012). As a consequence, the integrated management of water becomes an increasingly important part of urban
planning both in terms of flood and urban heat island risk mitigation (Niemczynowicz, 1999).

Green roofs are often discussed as a possible remedy for these problems. The vegetation and soil of green roofs can retain
water and delay discharge after rainfall events, thereby reducing the flood risk. Evaporation of the stored water over time
leads to lower roof temperatures by converting sensible into latent heat (Getter and Rowe, 2006). This also lowers indoor
temperatures and reduces the energy demand for cooling (Castleton et al., 2010). The water availability depends on the local
climate as well as green roof design. Tools to assess the benefits of such installations are thus needed for better planning urban
development. Central questions an urban planner may have are thus 1) how much cooling can be achieved by green roofs given
the available amount of water in a city and 2) how much water is required to achieve a certain amount of cooling.
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Quantifying the cooling effect of green roofs on outdoor air temperatures is difficult and various studies suggest only a
small temperature reduction on street level (Li et al., 2014; Gromke et al., 2015, Yang et al., 2016). Roofs with a high albedo,
so-called “cool roofs”, reflect a larger proportion of solar radiation than conventional roofs and may excel in reducing outdoor
temperatures (Mackey et al., 2012; Georgescu et al., 2014; Santamouris, 2014), but they lack the additional benefits for ecology
and water management that green roofs provide (Oberndorfer et al., 2007). Yet, to significantly improve thermal comfort both
cool and green roof strategies need to be implemented on a large scale. This also brings up the question how efficiently the
implementation of green roofs can be scaled up. Li et al. (2014) and Sun et al. (2016) describe a linear decrease of air temperature
with green roof fraction, Mackey et al. (2012) compare temperature reduction to the normalised difference vegetation index
(NDVI) from satellite measurements and also find a linear relationship. However, this dependency is not well understood. If
this relation holds in general, a fast way of determining the slope coefficient depending on urban characteristics will be of great
support for decision makers and urban planners.

This paper establishes a simple relation to estimate the cooling potential of green roofs for known urban properties and
climate. Specifically we 1) quantify the cooling of green roofs on an urban scale taking the urban energy balance (UEB) model
approach (Oke, 1988; Grimmond et al., 2010); 2) examine how the cooling relates to the evaporation rates; and 3) derive a
relatively simple equation for the cooling potential for a given amount of water to evaporate. The paper is organised as follows.
In Section 2 the original UEB model and the changes we made for simulating green roofs in an urban environment are discussed.
In Section 3 we will present steady and unsteady diurnal cases simulated with the new model and study the effect of surface
layer thickness, urban geometry, method of water supply and evaporation from green roofs on the surface layer temperature.
In Section 4 we derive an algebraic equation to predict the cooling from green roofs and compare it to the findings in Section 3.
Finally in Section 5 we discuss our findings and set them into context of application in real cities.

2. Model description

2.1. Town Energy Budget

The coupling of numerical weather prediction models with the (urban) surface is usually achieved by using land surface
modules such as the Town Energy Budget (Masson, 2000, TEB) used by the French national weather service (Météo-France) or
the Joint UK Land Environment Simulator (Best et al., 2011; Clark et al., 2011, JULES) by the UK Met Office. These models are
based on a surface energy balance. Urban areas exchange energy in various forms, such as incoming and outgoing longwave
(L↓, L↑) and shortwave radiative fluxes (S↓, S↑), the turbulent sensible heat flux (H), the turbulent latent heat flux (E), ground
heat flux (G) and the net heat storage per unit time (DQ ≡ dQ/dt). These fluxes have to balance and the surface energy balance
equation is expressed as

DQ = (L↓ − L↑) + (S↓ − S↑) − (H + E + G), (1)

where all the terms have unit Wm−2. Additional heat sources could be added if necessary, e.g. anthropogenic heating. UEB
models solve a set of ordinary differential equations describing the evolution of heat and water on urban surfaces such as roads,
walls and roofs. Air movement is not modelled explicitly; instead aerodynamic resistances are used to describe the turbulent
heat and moisture transport in the atmosphere.

We used the open source TEB as starting point for our UEB model. Here we summarise the principles underlying TEB, for a
detailed description see Masson (2000). The urban geometry in TEB is represented as a generic street canyon, including a single
conventional roof (R), wall (w) and road (r) surface (Fig. 1a). The scheme assumes isotropy for the street and house distribution
on a large horizontal scale. Equations describing directional process such as radiation are thus integrated horizontally over 360◦.
TEB therefore does not represent single buildings, but rather the average over a large domain. The canyons are represented
by mean building height (h), building width (b) and road width (l). Grimmond et al. (2010) have previously shown that more
complex UEB models do not necessarily yield more accurate results. Three distinct energy budgets are considered for the roof,
wall and road. The TEB scheme thus takes the form of five coupled differential equations, three for the temperatures and two
for the water reservoirs on the roof and the road. The evolution of temperature with time is described as

c�d�
dT�
dt

= S� + L� − H� − E� − G�, (2)

where T� [K] represents the roof, wall or road temperature, respectively. The corresponding heat capacity is c [Jm–3K–1] and the
layer thickness d [m]. The water (W) budget on the roof and road is

dW�
dt

= P − E�
Lv

− R, (3)
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