ELSEVIER

Contents lists available at ScienceDirect

Chemical Engineering Journal

journal homepage: www.elsevier.com/locate/cej

Chemical Engineering Journal

Removal of dissolved organic carbon and bromide by a hybrid MIEXultrafiltration system: Insight into the behaviour of organic fractions

Oriol Gibert ^{a,b,*}, Neus Pages ^a, Xavier Bernat ^b, José Luis Cortina ^{a,b}

- ^a Chemical Engineering Dept., UPC-BarcelonaTECH, Av. Diagonal, 647 08028 Barcelona, Spain
- ^b Cetaqua, Water Technology Center, Ctra. Esplugues 75, 08940 Cornellà de Llobregat, Spain

HIGHLIGHTS

- A continuous-flow hybrid system MIEX/UF for the removal of DOC and Br⁻ is proposed.
- MIEX exhibited higher affinity toward DOC than toward Br-.
- High molecular weight organic fractions were mainly removed by size exclusion by UF.
- Low molecular weight organic fractions were mostly removed by ion-exchange on MIEX.
- The hybrid system removed DOC (by 32-46%) more efficiently than UF alone (<5%).

ARTICLE INFO

Article history:
Received 28 September 2016
Received in revised form 17 November 2016
Accepted 18 November 2016
Available online 19 November 2016

Keywords: MIEX Ultrafiltration Dissolved organic carbon Bromide HPSEC FEEM

ABSTRACT

Dissolved organic carbon (DOC) and bromide (Br⁻) are principal precursors in the formation of halogenated disinfection by-products resulting from chlorination of drinking water. Their effective removal from water represents, thus, one of the main challenges faced by drinking water treatment plants worldwide. The objective of this study was to evaluate the performance of a pilot-scale hybrid system based on the patented magnetic ion-exchange resin (MIEX) combined with ultrafiltration (UF) in the removal of DOC and Br⁻ from water. Two different doses of MIEX (1 mL/L and 3 mL/L) were applied and compared. Samples of feed water, UF permeate and tank solution were regularly collected to assess the system performance in terms of removal of DOC and Br-. DOC was characterised by high-performance sizeexclusion chromatography (HPSEC) and 3D-fluorescence excitation-emission matrix (FEEM) to identify which organic fractions were preferentially removed by the MIEX/UF process. Results demonstrated that the hybrid MIEX/UF system was able to remove DOC and Br from water. The evolution and extent of these removals depended on the MIEX dose applied, with percentage removals clearly increasing when the MIEX dose was increased from 1 mL/L to 3 mL/L. MIEX exhibited higher affinity toward DOC than toward Br-. Saturation of MIEX toward Br- was achieved short after the start of the experiment, while removal of DOC persisted until the end of the experiment. Fractionation of DOC by HPSEC indicated that the highest molecular weight fraction was mainly removed by size-exclusion by the UF membrane, while lower molecular weight fractions seemed to be better removed by ion-exchange on the MIEX resin. FEEM analysis revealed a poor affinity of MIEX toward microbial by-products, whereas fulvic and humic acidlike material were the most retained by MIEX.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Dissolved organic carbon (DOC) and bromide (Br⁻) are principal precursors of halogenated disinfection by-products resulting from chlorination of drinking water [1]. The need for efficiently remov-

E-mail address: oriol.gibert@upc.edu (O. Gibert).

ing DOC and Br⁻ has prompted drinking water treatment plants (DWTPs) to explore novel technical approaches that outperform conventional treatments (such as coagulation/flocculation, sand filtration or activated carbon adsorption) [2–4].

One of such approaches is the filtration by membranes. Microfiltration (MF) and ultrafiltration (UF) membranes can effectively remove particles, colloids and bacteria at low transmembrane pressures (not exceeding 2 bar), but are poorly effective at removing DOC and ions such as Br⁻ due to their relatively large mem-

 $[\]ast$ Corresponding author at: Chemical Engineering Dept., UPC-BarcelonaTECH, Av. Diagonal, 647 08028 Barcelona, Spain.

List of symbols and acronyms **AER** anion exchange resin feed flow rate (L/s) Q_{feed} BB building blocks permeate flow rate (L/s) Q_{permeate} RP biopolymers total DOC amount entered the hybrid system at any $q_{DOC}^{III,t}$ DOC concentration in feed at any time (mg/L) time (mg) C_{DOC,feed} $q_{DOC}^{out,t}$ DOC concentration in permeate at any time (mg/L) total DOC amount exited the hybrid system at any time C_{DOC,permeate} DOC concentration in the tank at any time (mg/L) ct DOC,tank DOC qaccum,t dissolved organic carbon DOC amount accumulated within the hybrid system at **DWTP** drinking water treatment plant any time (mg) $q_{DOC}^{diss,t}$ FEEM fluorescence excitation emission matrix DOC amount dissolved in water (mg) **HPSEC** high-performance size-exclusion chromatography $q_{DOC}^{MIEX,t} \\$ DOC amount loaded onto the MIEX resin (mg) HS humic substances $q_{Br}^{\text{MIEX},t}$ **LMWA** low molecular weight acids Br⁻ amount loaded onto the MIEX resin (mg) **LMWN** low molecular weight neutrals RO reverse osmosis MF microfiltration UF ultrafiltration **MIEX** magnetic ion exchange V_{tank} volume of the tank (L) MW molecular weight NF nanofiltration

brane pore sizes [5,6]. The removal of DOC and ions can be attained by using denser membranes such as nanofiltration (NF) and reverse osmosis (RO) membranes, but at expenses of applying high transmembrane pressures.

A significant drawback of the application of membrane technology, regardless the type of membrane used is membrane fouling with the subsequent reduction of the hydraulic permeability of the membrane [5]. DOC is acknowledged to be a main foulant even for MF and UF membranes, which can be fouled by organic substances through sieving effects and sorption on/in the membrane [6,7]. Thus, removal of DOC prior to a membrane step is usually necessary to alleviate membrane fouling.

Another approach to remove DOC is the application of an anion exchange resin (AER), taking advantage that most organic compounds in natural waters are in ionic form [4,8]. An AER that is receiving particular attention is the patented MIEX marketed by Orica Watercare. When in contact with it, negatively charged DOC is removed by exchanging with the mobile counterion on active sites on the MIEX surface (usually Cl⁻), resulting in a reduction in the DOC concentration and a small increase in Cl⁻ concentration in the treated water [9,10]. MIEX differs from conventional AER by two unique properties: it is produced in the form of microsized beads (\sim 180 μ m, i.e. 2–5 times smaller than conventional resins) and it incorporates magnetic iron oxide within its core. The small size of the beads provides a high surface area that facilitates rapid exchange between DOC and Cl⁻ [9-11], whereas the magnetic iron oxide within its core allows the beads to agglomerate into larger, fast-settling particles facilitating separation and recycling of the resin in a continuous process [2,5,12]. Due to these properties, MIEX resin is designed to be used either in a slurry contactor or in a fluidized bed, unlike larger, traditional AER commonly operated in packed beds [12]. In addition to DOC, MIEX has been reported to also exchange other anions from water such as Br⁻ [13].

The MIEX resin only removes part of DOC from water but does not remove turbidity, which needs to be removed (together with any resin beads that might be carried away from the system) by some form of treatment, e.g. by UF membranes. This combination gives rise to the hybrid MIEX/UF system, whereby water is first contacted with the MIEX resin and then the slurry MIEX/water is filtered through the UF membrane, which retains the loaded MIEX beads and turbidity. The premise of such an approach is that the hybrid system benefits from the enhanced removal of DOC by MIEX that would not be retained by UF alone [14], the removal

of turbidity (and part of DOC) by UF not retained by MIEX alone and, according to some studies, the prevention of UF membrane fouling by DOC sorption onto the membrane [15]. Moreover, since fouling has recently been reported to be worsened by upstream oxidation processes (e.g. ozonation) commonly applied in DWTP [16], it is likely that MIEX would serve as a more desirable upstream treatment unit than oxidation.

Like with any treatment targeting DOC, characterisation of DOC by novel techniques such as high-performance size-exclusion chromatography (HPSEC) and fluorescence spectroscopy providing the 3-D fluorescence excitation-emission matrix (FEEM) has attracted the attention of researchers working with MIEX. Nevertheless, there are still some discrepancies on how physicochemical properties of DOC affects its removal by MIEX [9,10]. As outlined by Mergen and co-workers, "the current opinion with regard to the types or organic material preferentially removed by the [MIEX] resin is unclear" and, therefore, "there is a strong need for further research into the types of organic material that can be removed by the [MIEX] resin" [17].

There is relatively abundant research on MIEX for the removal of DOC from natural water. However, and although full-scale application of MIEX resin is intended for use in a continuous-flow process, most of the published studies have been carried out on a batch basis following either the single-loading procedure or, in an attempt to better mimic a continuous-flow mode, multipleloading procedure [3,8,12,15]. To get insight into the behaviour of DOC fractions, some of these studies have applied HPSEC and/ or FEEM [4,7,18,19]. Some others have included Br⁻ as target solute to be removed together with DOC, but often at relatively low concentrations of both Br⁻ and SO₄²⁻, which is a competitor for the MIEX exchangeable sites [13,20,21]. While these batch studies provide useful information on the capabilities of MIEX resin to remove DOC (and to a lesser degree Br⁻) their results cannot always be extrapolated to continuous-flow systems. Published studies based on continuous-flow systems can be found in the scientific literature [11,12,22-24] and, of these, some have characterised DOC by means of HPSEC [11,12,22] but to our knowledge none with FEEM. Finally, even less studies exist on hybrid systems based on MIEX/UF (or MF). Of these, some focus on the treatment of secondary- and tertiary- wastewater effluents that exhibit different organic composition and treatability from surface water [14,25], and fewer on surface water [2,5]. Again, some of these studies characterise DOC by HPSEC but not by FEEM.

Download English Version:

https://daneshyari.com/en/article/6466440

Download Persian Version:

https://daneshyari.com/article/6466440

<u>Daneshyari.com</u>