Chemical Engineering Science 173 (2017) 303-334

Contents lists available at ScienceDirect

Chemical Engineering Science

journal homepage: www.elsevier.com/locate/ces

Electrostatics in gas-solid fluidized beds: A review

Farzam Fotovat, Xiaotao T. Bi*, John R. Grace*

Department of Chemical and Biological Engineering, University of British Columbia, Vancouver V6T 1Z3, Canada

HIGHLIGHTS

• The characterization methods of electrostatics in fluidized beds are outlined.

• Charge generation and distribution phenomena in fluidized beds and the underlying mechanisms are discussed.

• The interplay between electrostatics and hydrodynamics in fluidized beds is reviewed.

• Practical applications of tribocharging fluidized beds are presented.

• The CFD simulations of fluidized bed systems including electrostatic charges are compared.

ARTICLE INFO

Article history: Received 3 May 2017 Received in revised form 29 June 2017 Accepted 2 August 2017 Available online 3 August 2017

Keywords: Fluidization Electrostatics Hydrodynamics Triboelectric charging Application Simulation

ABSTRACT

Gas-solid fluidized beds, by their nature, are associated with intense and frequent collisions of solid particles with each other and with the vessel wall, causing tribo-electrification. Accumulation of electrostatic charges in fluidized bed reactors can result in severe problems such as agglomeration, wall fouling, nuisance and hazardous discharge, all reducing the process performance and raising significant safety concerns. Tribo-charging of particles in fluidized beds has also been exploited in a number of useful applications. In this review, the characterization methods of electrostatics and the mechanisms of charge generation and distribution in fluidized beds are presented, followed by an account of the interplay between the hydrodynamics and electrostatic phenomena. Furthermore, techniques of electrostatic charge control in fluidized beds are reviewed, and applications of tribo-electrostatic fluidization systems are summarized. Finally, computational fluid dynamics simulations of the electrostatic effects on the hydrodynamic characteristics of fluidized beds are outlined.

© 2017 Elsevier Ltd. All rights reserved.

Contents

1.	Introduction		
2.	Tharacterization of electrostatics in fluidized beds	305	
	2.1. Direct methods	305	
	2.1.1. Faraday cups	305	
	P.2. Indirect methods	306	
	2.2.1. Electrostatic probes and sensors	306	
	2.3. Particle trajectory tracking	309	
3. Charge generation and distribution in fluidized beds		309	
	3.1. Charge generation	309	
	3.2. Bipolar charging	310	
	3.3. Charge distribution	311	
4.	telationship between electrostatic phenomenon and hydrodynamics in fluidized beds	313	
	I.1. Electrostatic force vs. other forces acting on fluidized particles	313	
	I.2. Influence of fluidized bed hydrodynamics on electrostatics	314	
	I.3. Influence of electrostatics on hydrodynamics of fluidized beds	316	
5.	lectrostatic charge control	319	

* Corresponding authors.

E-mail addresses: ffotovat@mail.ubc.ca (F. Fotovat), xbi@chbe.ubc.ca (X.T. Bi), jgrace@chbe.ubc.ca (J.R. Grace).

Review

6.	Appli	cations	320
	6.1.	Powder coating	320
	6.2.	Solids separation	320
		6.2.1. Coal and fly ash beneficiation	320
		6.2.2. Separation of granular plastic waste	321
		6.2.3. Protein enrichment in a tribo-electrification bio-separation process	322
	6.3.	Modifying hydrodynamics of fluidized beds	322
6.4. Enhancing fluidization of r		Enhancing fluidization of nanoparticles	322
	6.5.	Measuring fluidized bed hydrodynamics	324
		6.5.1. Measurement of particle mean velocity	324
		6.5.2. Measurement of bed level	325
7.	Simul	lation including electrostatic charges	325
8.	Sumn	nary and recommendations	330
	Ackn	owledgements	330
	Refer	rences	330

Nomenclature

Symbol	S	Ζ	dis
Ap	probe tip surface area, m ²		
d	particle diameter, m	Greek letters	
D	fluidized bed diameter, m	α_i	fitt
$D_{\rm b}$	bubble size/diameter, m	βi	fitt
d_p	particle diameter, m	γ _i	fitt
E_{d}	breakdown potential in air $(3 \times 10^6 \text{ V/m})$	Δt	tim
F _d	drag force, kg m/s ²	$\Delta \tau$	tim
Fe	electrostatic force, kg m/s ²		pea
F_{g}	gravity force, kg m/s ²	3	voi
Ι	total current, A	ε ₀	vac
q	particle electrostatic charge, C	$ ho_{ m b}$	flui
$q_{\rm m}$	charge density or specific charge on particles, C/kg	$ ho_{ m p}$	par
t	time, s		
Ub	bubble velocity, m/s	Subscripts	
Ug	superficial gas velocity, m/s	1	up
U _{jet}	jet velocity, m/s	2	low
$U_{\rm mf}$	minimum fluidization velocity, m/s	max	ma
Ut	terminal settling velocity of particles, m/s	min	mii
VV _s	entrainment flux of solid particles, kg/m ² s	mf	miı
Xi	weight fraction of fine particles having a_i as average		
	alameter, amensiomess		

tance between tips of a dual-tip probe, m

- ed parameter in Eq. (5), kg/m
- ed parameter in Eq. (5), C s²/kg m²
- ed parameter in Eq. (5), C/kg
- e lag between peaks from two tips, s
- e difference between maximum and minimum aks from one tip. s
- dage, dimensionless
- cuum permittivity (8.854 \times 10⁻¹² F/m)
- idized bed density, kg/m³
- ticle density, kg/m³
- per probe tip
- ver probe tip
- ximum
- nimum
- nimum fluidization

1. Introduction

Fluidization is associated with solid particles being transformed into a fluid-like state by a flowing fluid. It arrived on the industrial scene in a major way in the early 1940s with Fluid Catalytic Cracking (FCC) (Jahnig et al., 1980) and has since been implemented in many other industrial applications, including solid-catalyzed gasphase reactions, non-catalytic reactions and physical processes. Advantageous features of gas-solid fluidized beds such as excellent gas-solid contacting, efficient and uniform heat transfer, temperature uniformity, and suitability for processing a wide range of feedstocks, have led to widespread industrial applications including coal/biomass combustion/gasification/pyrolysis, drying, coating, ore roasting, catalytic processes such as acrylonitrile, aniline and Fischer-Tropsch synthesis, and gas-phase polyolefin production (Grace et al., 2006; Kunii and Levenspiel, 1991).

Electrostatic charging of particles in gas-solid fluidized beds was first reported about 60 years ago in connection with anomalous behavior encountered in experiments on subjects as diverse as heat transfer (Miller and Logwinuk, 1951), elutriation (Osberg and Charlesworth, 1951), and characteristics of fluidized particles (Lewis et al., 1949). Problems associated with fluidized bed electrification include particle-wall adhesion, inter-particle cohesion and electrostatic discharges. The charged particles can coat vessel walls, requiring frequent cleaning. The electrostatic charges on particles and vessel walls, as well as the high-voltage electrical fields arising from them, can affect hydrodynamics and cause the formation of undesired byproducts (Cheng et al., 2012a). They can also interfere with sensors and bed internals, leading to malfunction of measurement instruments and operation (Zhang et al., 2013). For instance, when electrical capacitance tomography (ECT) is applied in a particulate process, electrification can result in measurement errors and even malfunction of some ECT systems (Gao et al., 2012; Zhang et al., 2014). Electrostatic charges are also responsible for potentially severe problems in commercial gassolid fluidized bed facilities due to agglomeration (Ciborowski and Wlodarski, 1962), sheeting (Hendrickson, 2006), shank (fusion of solid particles into solid shapes resulting from overheating particles residing on the reactor wall in a reactive environment) (Moughrabiah, 2009), nuisance discharges and product handling (Chen et al., 2003a, 2003b). All of the obstacles owing to electrostatics, especially sheeting in fluidized bed polymerization reacDownload English Version:

https://daneshyari.com/en/article/6466786

Download Persian Version:

https://daneshyari.com/article/6466786

Daneshyari.com