
Improvement of the two-fluid momentum equation using a modified
Reynolds stress model for horizontal turbulent bubbly flows

Seung-Jun Lee a, Jae Hwa Lee b,⇑, Byoung Jae Kim c,⇑
a Thermal-Hydraulic Safety Research Division, Korea Atomic Energy Research Institute (KAERI), 111 Daedeok-daero 989, Yuseong-gu, Daejeon 305-353, Republic of Korea
b School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulsan 44919, Republic of Korea
c School of Mechanical Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea

h i g h l i g h t s

� Numerical simulations are performed for horizontal turbulent bubbly flows.
� Three different ways to formulate the momentum diffusion terms are tested.
� Proper forms of the momentum diffusion terms are suggested.
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a b s t r a c t

Two-fluid equations are widely used for practical applications involving multi-phase flows in chemical
reactor, nuclear reactor, desalination systems, boilers, and internal combustion engines. The popular
two-fluid equation for a gas-liquid two-phase flow is based on the assumption of interpenetrating con-
tinua. According to the experimental data of fully-developed turbulent bubbly flows in a horizontal pipe,
the bubble phase velocity is close to or slightly smaller than the liquid phase velocity. The velocity profile
is nearly symmetric along the vertical centerline of the horizontal pipe, or tends to be slightly skewed
toward the bottom region of the pipe. However, numerical simulations using the momentum equation
based on interpenetrating continua showed that, in contrast, the bubble phase was faster than the liquid
phase. In addition, the velocity profile was predicted to be skewed toward the upper region of the pipe.
These simulation results are not consistent with experimental observations. In the meantime, there are
particle averaged momentum equations in which the continuous and disperse phase equations are devel-
oped from the equations of motions of fluid and particle, respectively. We considered two different par-
ticle averaged momentum equations. The form of one particle averaged momentum equation is similar to
that of the momentum equation based on interpenetrating continua, except for the laminar viscosity
term. Thus, for a turbulent bubbly flow, this particle averaged equation showed similar results as
observed in the momentum equation based on interpenetrating continua. The other particle averaged
equation differs from the momentum equation based on interpenetrating continua in both laminar
and turbulent viscosity terms. This particle averaged equation showed good agreement with experimen-
tal observations.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Two-fluid equations are widely used for practical applications
involving multi-phase flows in chemical reactor, nuclear reactor,
desalination systems, boilers, and internal combustion engines.
There is no doubt that the two-fluid equations are an extremely

useful tool to predict the macroscopic behavior of a multi-phase
flow.

The popular two-fluid equations are obtained by applying the
time- or volume-averaging method to the local instantaneous con-
servation equations (Drew, 1983; Ishii, 1975). All phases are
assumed to be continuous fields (interpenetrating continua), and
the same averaging process is applied to all phases, irrespective
of the phase topology. For an adiabatic two-phase flow, the
volume-averaged momentum equation for phase k can be written
in the form
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@t
ðakqkukÞ þ r � ðakqkukukÞ ¼ �akrpk þr � ðakskÞ

þ r � ðaksRek Þ þ akqkgþ f ik
þ ðpk;i � pkÞrak � sk;i � rak; ð1Þ

where ak, qk, uk, pk, sk, sRek , g, f ik, pk;i, and sk;i are the phase fraction,
density, velocity vector, pressure, viscous stress tensor, Reynolds
stress tensor, gravitational acceleration, and generalized interfacial
drag, average interfacial pressure, and average interfacial viscous
stress tensor, respectively. The last two terms in Eq. (1) can be
important for separated flows (Ishii and Hibiki, 2011; Ishii and
Mishima, 1984), but can be neglected for other flows. As a result,
for a dispersed flow, the following equation is used:
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ðakqkukÞ þ r � ðakqkukukÞ ¼ �akrpk þr � ðakskÞ

þ r � ðaksRek Þ þ akqkgþ f ik: ð2Þ
However, the above equation yields a physically incorrect

result. Consider a two-phase flow at rest without gravity. Then,
the last two terms of Eq. (1) induce a source of momentum solely
due to the spatial arrangement of the phase (Harlow and Amsden,
1975). To avoid such a unphysical situation, Prosperetti (2007)
suggested
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ðakqkukÞ þ r � ðakqkukukÞ ¼ �akrpk þ akr � sk

þr � ðaksRek Þ þ akqkgþ f ik: ð3Þ
In the meantime, there is another type of momentum equation,

that is, particle averaged equation. The averaged momentum equa-
tions for the dispersed and continuous phases are obtained by
applying the local averaging process to the equation of motion
for the center of mass of a single particle and the Navier-Stokes
equation, respectively (Anderson and Jackson, 1967; Crowe et al.,
2011; Prosperetti and Jones, 1984). This particle averaged equation
has been usually used for a gas-solid particle system; however it
can also be used for a gas-liquid system (Lee et al., 2017; Moraga
et al., 2006; Zhang and Prosperetti, 1994). Unless the interaction
between the fluid particles is considered, the main difference from
Eq. (2) is in the momentum diffusion terms. According to Anderson
and Jackson (1967), akr � sc þ akr � sRec is substituted for the sec-
ond and third terms on the right of Eq. (2), where the subscript c
signifies the continuous phase. On the other hand, Crowe et al.
(2011) formulated the momentum diffusion terms as
akr � sc þr � ðaksRek Þ. In the particle averaged momentum equa-
tion, the viscous stress term is written as akr � sc . However, the
Reynolds stress term varies depending on literature. Though the
differences in the momentum equations are seemingly due to the
formally different averaging, the differences may be due to some
looseness of unclosed terms.van Wachem et al. (2001) noticed a
difference between the momentum equation based on interpene-
trating continua (Ishii, 1975) and the particle averaged equation
(Anderson and Jackson, 1967), and performed a comparative study
on the momentum equations in a vertical gas-solid system. The
predictions based on the two different momentum equations did
not differ in terms of the macroscopic flow behavior; however,
the flow of the gas phase was slightly different in areas with a large
solid fraction gradient. That result is attributed to the fact that the
turbulence effect was not considered in the simulations.

We now discuss the relative velocity between the two phases.
Podowski (2009) mentioned the possibility that the dispersed
phase can be predicted to be faster than the continuous phase even
for a fully-developed dispersed flow, unless the wall drag force on
the dispersed phase is properly considered in the one-dimensional
averaged momentum equation. Is it possible for the bubble phase
to be faster than the liquid phase in a fully-developed bubbly flow?

Bottin et al. (2014) measured the bubble and liquid velocities in a
short horizontal pipe. Fig. 1 shows the bubble and liquid velocity
profiles along the vertical centerline from the bottom wall to the
top wall. One can see that the bubble phase is slightly slower than
the liquid phase. Kong and Kim (2017) and Talley et al. (2015) mea-
sured bubble velocities in a long horizontal pipe, and compared the
result with the liquid-phase velocity estimated using the approach
employed by Kocamustafaogullari and Huang (1994); the bubble
phase was slower than the liquid phase (not shown here). It is
obvious that the dispersed-phase is not faster than the continuous
phase for a fully-developed dispersed flow.

Recently, Lee et al. (2017) applied the particle averaged equa-
tions, which have been used for solid-gas flows, to bubbly flows.
Lee et al. (2017) performed numerical simulations for multi-
dimensional bubbly flows under a conceptual condition in which
the effects of gravity, lift force, wall lubrication, and turbulent dis-
persion are excluded. For such an ideal condition, the bubble phase
experiences only the interfacial drag caused by the relative velocity
between the two phases, and the velocities of the two phases are
expected to equalize for a fully-developed bubbly flow in a hori-
zontal pipe. However, the momentum equation based on interpen-
etrating continua (Eq. (2)) predicted that the bubble phase was
faster than the liquid phase. Even when akr � sc þr � ðaksRek Þ was
used for the momentum diffusion terms, the bubble phase was
predicted to be faster than the liquid phase if a flow was turbulent.
On the other hand, when akr � sc þ akr � sRec was substituted for
the momentum diffusion terms, the two phase velocities were
equalized for both the laminar and turbulent flows.

So far, we have mentioned different momentum equations. This
study presents numerical simulations for fully-developed horizon-
tal bubbly flows to examine the validity of the two-fluid momen-
tum equations. While Lee et al. (2017) considered ideal
conditions, this study considered real experimental conditions.
For horizontal flows, the difference between the stream-wise
velocities of the two phases can be used to examine the validity
of each momentum equation. There are previous numerical simu-
lations of horizontal bubbly flows using the momentum equation
based on interpenetrating continua (Ekambara et al., 2008; Li
et al., 2010; Yeoh et al., 2012) or the mixture equation
(Shang et al., 2013). The previous works showed reasonable
predictions for Kocamustafaogullari’s experimental data
(Kocamustafaogullari and Huang, 1994; Kocamustafaogullari
et al., 1994; Kocamustafaogullari and Wang, 1991). However, the
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Fig. 1. Bubble and water velocity profiles along the vertical centerline in a
horizontal pipe (Bottin et al., 2014).
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