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h i g h l i g h t s

� A Just-in-time (JIT) and Relevant-vector-machine (RVM) to perform perditions.
� Nature-inspired optimized algorithm that ensures optimal parameters selection for JIT and RVM.
� A JADE evolution algorithm to optimize parameters for JIT and RVM without hyper-parameter setting.
� A moving window methodology for improvement of the JIT and RVM model.
� Proposed method is efficiently attractive in a wastewater plant monitoring.
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a b s t r a c t

Just-in-time (JIT) and Relevant vector machine (RVM) are two of commonly used models for soft-sensors
modeling, the efficiency of which is governed by few critical parameters and hyper-parameters signifi-
cantly. These parameters are routinely selected by trial and error or experience, thus leading to over-
or under-fitting for the prediction. Adaptive differential evolution with optional external archive
(JADE) has been used to optimize the parameters of JIT and RVM in this paper. The resulted JADE-JIT
and JADE-RVM based soft-sensors are further enhanced into an adaptive format by the moving window
(WM) technique. The proposed methodologies are applied to prediction of hard-to-measured variables in
the wastewater treatment plants (WWTPs) and successful results are obtained.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Soft-sensors are widely used to estimate variables that are dif-
ficult to measure online due to technical difficulty, large measure-
ment delays, high investment cost, and so on (Kadlec et al., 2009;
Kano and Nakagawa, 2008; Liu et al., 2013). To describe the rela-
tionship between easy-to-measure variables and hard-to-
measure responses, machine learning methods including Neural
networks (Wold et al., 2001), Relevant vector machine (RVM)
(Salahshoor and Komari Alaei, 2010), Bayesian networks (Cai
et al., 2014, 2016) and Support vector regression (SVR) (Yan
et al., 2004) are typically researched as the soft sensor models.

One of the main bottlenecks limiting widely use of soft-sensors
modeling is the proper calibration of their parameters. Parameter
calibration is essentially an optimization problem, which requires

higher-level optimization methods to tackle. A recent study
showed that a framework for self-tuning algorithms can be indeed
established with promising results (Fister et al., 2013). The task of
fine-tuning parameters in machine learning aims at finding suit-
able values for those parameters in order to maximize some fitness
function, such as prediction accuracy, when dealing with super-
vised problems. However, some parameters, such as regularization
item and kernel function in SVMs, concerning model structure con-
figuration play an important role to the algorithm performance.
Typically, this is performed by crossing validation or trial and error
manually, which is laborious, particularly, as the dimension of
parameters increases significantly. Also, this could leave many
users to select algorithms based on reputation or intuitive appeal,
and/or to leave parameters set to default values. This suggests a
natural challenge for machine learning: given a dataset, automati-
cally and simultaneously choosing a learning algorithm and setting
its parameters to optimize empirical performance. The existing
techniques for adjusting the parameters can be summarized into
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two kinds: one is based on analytical techniques; the other is based
on heuristic searches. The first kind of techniques determines the
parameters with gradients of some generalized error measures
(SS, 2002). And the second kind of techniques determines the
parameters with modern heuristic algorithms including Genetic
Algorithms (GA), simulated annealing algorithms and other evolu-
tionary strategies. Iterative gradient-based algorithms rely on
smoothed approximations of a function. So, it does not ensure that
the search direction points exactly to an optimum of the general-
ization performance measure which is often discontinuous. Also,
this procedure needs to locate the interval of feasible solution
and a suitable sampling step. Moreover, when there are more than
two parameters, the manual model selection may become intract-
able. On the other hand, nature-inspired optimized methodologies
are among the most used ones for optimization problems, since
they provide simple and elegant solutions in a wide range of appli-
cations. Since the early 1970s, various nature-inspired optimiza-
tion algorithms have emerged starting with the Genetic
Algorithm (GA) (Yang, 2015). The motive behind the GA is to mimic
the nature to obtain suitable working solutions by using computa-
tional techniques, while create future generations in biological
organisms. During optimized stage, nature inspired operators, like
crossover and reproduction, are used to identify good working
solutions. GA often fails to address very complex high dimensional,
multi-modal problems where fitness function evaluation becomes
computationally very complex. Along with the GA, Particle Swarm
Optimization (PSO) (Guo et al., 2008) is based on the collective
group behavior of organisms, such as fish schooling, insect swarm-
ing or birds flocking, whereby the group attempts to meet the col-
lective objective of the group based on the feedback from the other
members Particle swarm optimization is used for problems where
the function to be optimized is discontinuous, non-differentiable
with too many non-linearly related parameters. Wind Driven Opti-
mization (WDO) technique is a population based iterative heuristic
global optimization algorithm for multi-dimensional and multi-
modal problems with the potential to implement constraints on
the search domain. Compared to similar particle based algorithms,
WDO employs additional terms in the velocity update equation
(e.g., gravitation and Coriolis forces), providing robustness and
extra degrees of freedom to tune properly. In aforementioned
nature-inspired algorithms, the best solutions explored in the his-
tory are used to direct the movement of the current population,
thus diminishing population diversity significantly. Instead of the
best solutions previously explored, a new proposed algorithm,
JADE, is able to explore a set of recently inferior solutions and con-
sider their difference from the current population as a promising
direction toward the optimum (Zhang and Sanderson, 2009). In
spite of greedy property of JADE, this strategy is able to diversify
the population so that the problems such as premature conver-
gence can be alleviated.

Due to the highly varying operating conditions, Moving window
(MV) method is commonly used to collect the most recent and
fairly long-term data for soft-sensor modeling during each step
when new data points are coming (Dayal and MacGregor, 1997;
Shao et al., 2015). During the adaption, parameters can be tuned
properly for the local model at each window rolling through
nature-inspired optimized algorithms. However, standard nature-
inspired optimized algorithms, such as GA, PSO, and WDO, have
to tune hyper-parameters for itself. To make sure full-scale param-
eter adaptation for adaptive soft-sensors, nature-inspired opti-
mized algorithms should be able to have self-adaptive hyper-
parameter control. According to the classification scheme intro-
duced by Angeline (1995) and Eiben et al. (1999), three classes of
hyper-parameter control mechanisms are defined, deterministic
hyper-parameter control, adaptive hyper-parameter control and
self-adaptive hyper-parameter control. Deterministic hyper-

parameter control: The control hyper-parameter is altered by some
deterministic rules without taking into account any feedback from
the evolutionary search. On the contrary, adaptive hyper-
parameter control take full use of feedback from the evolutionary
search to change the control hyper-parameters dynamically
(Valdez et al., 2014). Self-adaptive hyper-parameter control is a
method of ‘‘the evolution of evolution” aiming to conduct the
self-adaptation of control hyper-parameters (Abbass, 2002). Adap-
tive or self-adaptive hyper-parameter control, if well designed, can
enhance the robustness of an algorithm by dynamically adapting
the hyper-parameters to the characteristic of different fitness land-
scapes. It is thus applicable to various optimization problems with-
out trial and error. In addition, the convergence rate can be
improved if the control hyper-parameters are adapted to appropri-
ate values at different evolution stages of a specific problem. JADE
is new proposed nature-inspired algorithm with self-adaptive
hyper-parameter control. Due to the self-adaptive hyper-
parameter control of JADE, it can achieve faster and more reliable
convergence performance than the classic algorithms without
hyper-parameter control for many benchmark problems. The high
efficiency of JADE also makes it possible to apply them to a wide
range of problems in diverse applications. The reliability of the
algorithm is further improved by the adaptive hyper-parameter
control (Zhang and Sanderson, 2009). In view of the above consid-
erations, we introduce JADE for hyper-parameters optimization for
Moving window during soft-sensor model adaptation.

Both of RVM and Just-in-time (JIT) are two powerful and typical
machine learning methods for prediction (Liu et al., 2011, 2014).
However, the existence of few non-optimized parameters always
compromises their performance significantly (‘Kernel’ and ‘width’
for RVM, ‘Maximum number of neighbors’ and ‘Combination
parameters’ for JIT). This paper intends to introduce four nature-
inspired optimized algorithm, GA, PSO, WDO and JADE, to optimize
the non-optimized parameters of the RVM and JIT firstly. Due to
assimilation of nature-inspired optimized algorithm, tedious
cross-validation for parameter control can be avoided properly
and optimal parameters can be obtained. Considering the highly
varying operating conditions, the JIT and RVM are enhanced by
the WM technique to build adaptive soft-sensors. Additionally, to
deal with the problem of parameters optimization online, a
hyper-parameter-free algorithm, JADE, is proposed to search for
the best parameters for JIT and RVM on-line, thus resulting in
the variable structure adaptive soft-sensors secondly.

In Section 2 the preliminary knowledge of JIT model, RVM
model and JADE algorithm is introduced. Section 3 proposes JADE
to derive the optimal parameters of JIT and RVM. The resulted JIT
and RVM models are further improved by WM to be able to adapt
to the dynamic processes. The proposed soft-sensors are validated
through the data sets from a real wastewater treatment plants
(WWTPs) in Section 4. Finally Section 5 concludes.

2. Predicted models and adaptive differential evolution with
optional external archive (JADE)

2.1. Just-in-time model

A global linear model does not function well when a process has
strong nonlinearity in its operation range. Division of a process
operation region into small multiple regions and configuration of
a local model in each small region provide an alternative to deal
with this problem. JIT learning, also called Lazy learning, is a local
learning technique which postpones all the computation until an
explicit request for a prediction is received. The request is fulfilled
by interpolating locally the samples considered relevant according
to a distance measure. Each prediction requires therefore a local
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