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h i g h l i g h t s

� The 1-dimensional tubular reactor model with advection and axial diffusion is studied.
� Semi-analytical solutions are found for any initial/boundary conditions and kinetics.
� Concentrations are expressed as integrals to analyze effects of earlier conditions.
� The effects of initial/boundary conditions are separated from the effect of reactions.
� Former and latter effects are solved analytically and numerically, respectively.
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a b s t r a c t

The one-dimensional tubular reactor model with advection and possibly axial diffusion is the classical
model of distributed chemical reaction systems. This system is described by partial differential equations
that depend on the time t and the spatial coordinate z. In this article, semi-analytical solutions to these
partial differential equations are developed regardless of the complexity of their initial and boundary
conditions and reaction kinetics. These semi-analytical solutions can be used to analyze the effect on
the concentrations at the current coordinates z and t of (i) the initial and boundary conditions, and (ii)
the reactions that took place at an earlier time. A case study illustrates the application of these results
to tubular reactors for the two cases, without and with diffusion.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Industrial chemical processes typically rely on process models
for design, monitoring, control and optimization. Distributed
chemical reaction systems correspond to processes involving reac-
tions with phases that are not well mixed, thus resulting in spatial
dependencies. Tubular reactors (Friedly, 1972) and reactive separa-
tion columns (Taylor and Krishna, 2000) are examples of such sys-
tems. The dependent variables of these models are typically
concentrations and temperatures. These variables, which depend
on time and spatial coordinates, are described by partial differen-
tial equations (PDEs) consisting of material and heat balances that
couple the effects of advection, reaction, diffusion, conduction, and
initial and boundary conditions. The coupling in time and space
makes the analysis of distributed reaction systems more complex.
In addition, depending on the type of boundary conditions, these
systems can be more or less difficult to analyze (Parulekar and
Ramkrishna, 1984).

Each combination of dynamic effects results in a different class
of physical problems. Two important classes are the advection-
reaction and the advection-diffusion-reaction problems. It has been
shown that, for a single-phase one-dimensional system represent-
ing an advection-diffusion-reaction problem with a first-order
reaction, an analytical solution can be obtained for arbitrary
boundary conditions (Logan and Zlotnik, 1995). An extensive list
of analytical solutions for the single-phase one-dimensional
advection-diffusion-reaction problem with various specific initial
and boundary conditions and zeroth- and first-order reaction
kinetics is available (van Genuchten and Alves, 1982). These solu-
tions have also been obtained for several particular cases of spa-
tially and temporally dependent velocities and diffusion
coefficients (Kumar et al., 2010). Besides the semi-infinite spatial
domain considered in this paper, it is also possible to find solutions
for the case of finite spatial domain (Guerrero and Skaggs, 2010).
However, the influence of and interaction between the different
dynamic effects become more difficult to understand when reac-
tions with arbitrarily complex kinetics are considered, or for
higher-dimensional problems. Nevertheless, solutions for two-
and three-dimensional advection-diffusion-reaction problems
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with a first-order decay reaction are available (Zoppou and Knight,
1999).

This paper focuses on understanding the influence of and inter-
action between dynamic effects for the case of single-phase one-
dimensional tubular reactors subject to advection, axial diffusion
and reaction. It uses a novel approach to gain insight into the solu-
tions to PDEs describing concentration profiles. Instead of generat-
ing analytical solutions for specific initial and boundary conditions
and simple reaction kinetics, one obtains semi-analytical solutions
for arbitrary initial and boundary conditions and arbitrarily com-
plex reaction kinetics. The terminology semi-analytical comes from
the fact that the effect of the initial and boundary conditions can be
determined analytically, whereas complex reaction kinetics gener-
ally lead to a numerical solution, because the reaction rates depend
on the concentrations themselves. These semi-analytical solutions
quantify the effect on the concentrations at the current coordinates
of (i) the initial and boundary conditions, and (ii) the reactions that
took place at an earlier time, taking into account the transport by
advection and diffusion.

These solutions use a transformation of the original PDE system
that separates the effects of the initial and boundary conditions
from those of the reactions. This transformation has similarities
with the transformation to extents for distributed reaction systems
that has been suggested recently (Rodrigues et al., 2015a,b, 2017).
This paper focuses on the conceptual understanding of the solution
to PDE systems that describe one-dimensional tubular reactors,
rather than on the discussion of potential applications of
semi-analytical solutions. This understanding results from the
separation and quantification of the different effects at play in
the reactor.

The article is organized as follows. Section 2 reviews the
dynamic model (in terms of material balance equations) of
single-phase one-dimensional tubular reactors. Section 3 presents
semi-analytical solutions for the two cases without and with diffu-
sion. Section 4 discusses a case study where these semi-analytical
solutions are used to analyze the dynamics of a tubular reactor,
while Section 5 concludes the paper.

2. One-dimensional tubular reactor model

In single-phase one-dimensional tubular reactors, the concen-
trations and temperature are functions of the spatial coordinate z
and the time t. It is assumed that the inlet of the system is located
at z ¼ 0 and z is positive along the reactor length. Since the concen-
trations and the temperature vary with the spatial coordinate, the
concentration and temperature gradients might lead to significant
diffusion when the flow of material is not dominated by advection.
Hence, the general formulation of the material and energy balances
for a single-phase one-dimensional tubular reactor considers the
system from the standpoint of an advection-diffusion-reaction
problem.

Let us consider a single-phase one-dimensional tubular reactor
containing S species involved in R independent reactions. The S-
dimensional vector of concentrations cðz; tÞ is described by the
PDEs

@

@t
cðz; tÞ þ vz

@

@z
cðz; tÞ ¼ /rðz; tÞ þ D

@2

@z2
cðz; tÞ; ð1Þ

where vz is the constant advective velocity, /rðz; tÞ :¼ NTr cðz; tÞ;ð
Tðz; tÞ; hÞ is the S-dimensional vector of reaction contributions
affecting the S species, with N the R� S stoichiometric matrix and
r cðz; tÞ; Tðz; tÞ; hð Þ the R-dimensional vector of reaction rates
depending on the rate parameters h, D is the S-dimensional diagonal
matrix of constant diffusion coefficients, and the temperature Tðz; tÞ
is described by the PDE

@

@t
Tðz; tÞ þ vz

@

@z
Tðz; tÞ ¼ wðz; tÞ þ a

@2

@z2
Tðz; tÞ; ð2Þ

where wðz; tÞ :¼ �DHT/r ðz;tÞþ/exðz;tÞ
q cp

represents the contribution of reac-

tions and heat exchange to the temperature, with DH the S-
dimensional vector of enthalpies of formation at temperature Tref ,
/exðz; tÞ the rate of heat exchange with the environment and qcp
the constant product of density and specific heat capacity for tem-
peratures between Tref and any Tðz; tÞ, and a :¼ k= qcp

� �
is the ther-

mal diffusivity, with k the constant thermal conductivity.
For the sake of simplicity, only the concentrations will be con-

sidered and the temperature will be omitted in the remainder of
this article. However, all the results are valid for both isothermal
and nonisothermal reactors, since the dependence of the reaction
term /r on the temperature does not need to be taken into account
in the following developments.

The assumption of constant advective velocity requires the
same velocity for all axial and radial positions in the tubular reac-
tor. In physical terms, this implies that (i) the advective flow must
not be laminar (since it is well known that under this regime the
velocity would be a parabolic function of the radial position), and
(ii) the density of the mixture must be constant along the reactor
(to ensure the conservation of mass). Moreover, the assumption
of constant diffusion coefficients implies that the variation of com-
position and temperature within the reactor does not affect signif-
icantly these diffusion coefficients.

Eq. (1) is subject to the following initial conditions (IC) and
boundary conditions (BC):

cðz;0Þ ¼ c0ðzÞ; 8z > 0 ðICÞ; ð3Þ

cð0; tÞ ¼ cinðtÞ þ D
bvz

@c
@z

ð0; tÞ; 8t P 0 ðBCÞ; ð4Þ

lim
z!1

D
@c
@z

ðz; tÞ ¼ 0S; 8t P 0 ðBCÞ: ð5Þ

Eqs. (4) and (5) assume that the boundary conditions are
located at z ¼ 0 and z ! 1 for a semi-infinite spatial domain. Note
that b ! 1 if the advective boundary conditions are of the first
type (Dirichlet boundary conditions), whereas b ¼ 1 if the advec-
tive boundary conditions are of the third type (Robin boundary con-
ditions) (Farlow, 1993). The boundary conditions of the third type
may be more appropriate if the flow is discontinuous at the inlet
and hinders diffusion at that point, which is the case when the fluid
falls into the reactor, for example.

According to Rodrigues et al. (2015b, 2017), the solution to
Eq. (1) has the form

cðz; tÞ ¼ cibcðz; tÞ þ dcðz; tÞ: ð6Þ
The variable cibc denotes the effect of advection and diffusion on

the initial and boundary conditions and is defined in its differential
form as

@

@t
cibcðz; tÞ þ vz

@

@z
cibcðz; tÞ ¼ D

@2

@z2
cibcðz; tÞ; ð7Þ

with cibcðz;0Þ ¼ c0ðzÞ;8z > 0 ðICÞ, cibcð0; tÞ ¼ cinðtÞ þ D
b vz

@cibc
@z ð0; tÞ;

8t P 0 ðBCÞ, and limz!1 D @cibc
@z ðz; tÞ ¼ 0S;8t P 0 ðBCÞ.

On the other hand, the variable dc denotes the effect of advec-
tion and diffusion on the reactions, and is defined in its differential
form as

@

@t
dcðz; tÞ þ vz

@

@z
dcðz; tÞ ¼ /rðz; tÞ þ D

@2

@z2
dcðz; tÞ; ð8Þ

with dcðz;0Þ ¼ 0S;8z > 0 ðICÞ, dcð0; tÞ ¼ D
b vz

@dc
@z ð0; tÞ;8t P 0 ðBCÞ,

and limz!1 D @dc
@z ðz; tÞ ¼ 0S;8t P 0 ðBCÞ.
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