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h i g h l i g h t s

� A biological population balance model is solved using class and moment methods.
� Homogeneous chemostat and heterogeneous fedbatch cultures are simulated.
� Methods are compared through accuracy, stability and computation time.
� The Maximum Entropy method is found to be unstable in the present test-cases.
� QMOM and EQMOM are well suited and have major advantages against class method.
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a b s t r a c t

A predictive modelling for the simulation of bioreactors must account for both the biological and hydro-
dynamics complexities. Population balance models (PBM) are the best approach to conjointly describe
these complexities, by accounting for the adaptation of inner metabolism for microorganisms that travel
in a large-scale heterogeneous bioreactor. While being accurate for solving the PBM, the Class and Monte-
Carlo methods are expensive in terms of calculation and memory use. Here, we apply Methods of
Moments to solve a population balance equation describing the dynamic adaptation of a biological pop-
ulation to its environment. The use of quadrature methods (Maximum Entropy, QMOM or EQMOM) is
required for a good integration of the metabolic behavior over the population. We then compare the accu-
racy provided by these methods against the class method which serves as a reference. We found that the
use of 5 moments to describe a distribution of growth-rate over the population gives satisfactory accu-
racy against a simulation with a hundred classes. Thus, all methods of moments allow a significant
decrease of memory usage in simulations. In terms of stability, QMOM and EQMOM performed far better
than the Maximum Entropy method. The much lower memory impact of the methods of moments offers
promising perspectives for the coupling of biological models with a fine hydrodynamics depiction.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The large-scale simulation of bioreactors is currently a challeng-
ing issue. Such simulations must account for both (i) the (multi-
phase) hydrodynamics and (ii) the metabolic behaviour of the
biological population carried by the fluid. The first can be achieved
through the use of widespread CFD softwares which require signif-
icant computational power. The second can be addressed with
advanced cell models which result from community efforts to inte-
grate genome-scale reconstructions of a strain metabolic network
and depict thousands of intracellular reactions and metabolite con-

centrations. Examples are the iJO1366 model for Escherichia coli
(Orth et al., 2011) and the consensus YEAST model for Saccha-
romyces cerevisiae (Heavner et al., 2012; Heavner et al., 2013).
These models describe state of the art knowledge of a cell
metabolism, however their implementations require to solve
either cumbersome optimization problems to access a steady-
state cell-functioning, or to solve dynamically the metabolite con-
centrations in a cell that experiences exogeneous perturbations.

Even though the computational power increased significantly
over the past few decades, it is still not possible to couple the
CFD approach with a biological modelling that fully embraces the
biological complexity. Such an approach is numerically untractable
as it requires to solve dynamically the intracellular concentrations
for each cell in a bioreactor with an Euler-Lagrange framework.
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Therefore, two simplified approaches are usually applied. On the
one hand, one can neglect the spatial heterogeneity and solve a
complex metabolic model in homogeneous batch or chemostat cul-
tures (Meadows et al., 2010; Matsuoka and Shimizu, 2013). On the
other hand, one will describe the hydrodynamic complexity jointly
with a simplified biological approach such as either structured or
unstructured kinetic models (Bezzo et al., 2003; Elqotbi et al.,
2013; Lu et al., 2015).

Concentration gradients are known to be responsible for meta-
bolic dysfunctions in large-scale reactors (Enfors et al., 2001),
therefore we should avoid the first approach and describe the spa-
tial heterogeneities. However, the use of kinetic models should be
discarded too. Indeed, from the point of view of a cell travelling in
these heterogeneous concentrations fields, the concentration sig-
nal is fluctuating (Linkès et al., 2014; Haringa et al., 2016). This
make kinetic models inappropriate as they are usually based on
the Monod kinetics law which reflects a steady-state equilibrium
between a population and its environment. By making use of a
Monod law, the kinetic models have ‘‘been over simplified by
allowing instantaneous adaptation of the cell to the abiotic envi-
ronment” (Silveston et al., 2008).

In previous work (Pigou and Morchain, 2015), we stepped back
in both the hydrodynamic description by using a Compartment
Model Approach (Cui et al., 1996; Mayr et al., 1993; Vrábel et al.,
2000; Vrábel et al., 2001) and in the metabolic description of
E. coli by simplifying the key reactions of the central carbon meta-
bolism into a 6 reactions model inspired by the model proposed by
Xu et al. (1999). More importantly, we introduced the use of a Pop-
ulation Balance Model (PBM) as a key modelling tool that allows
describing simultaneously both (i) the concentration gradients,
(ii) a dynamic adaptation of cells to the fluctuating conditions they
experience along their trajectories and (iii) the metabolic impact of
a disequilibrium between a cell and its local environment. This
approach has been successfully challenged against experimental
data in lab-scale batch culture and industrial-scale heterogeneous
fedbatch culture. More recently, we improved the PBM to account
for an experimentally observed stochastic diversity related to cell-
division (Morchain et al., in press).

Until now, we solved the PBM using a class method (also known
as fixed pivot method, Kumar and Ramkrishna (1996a, 2001)) with
at least 60 classes to span the entire range of possible values for the
chosen variable (i.e. the maximum growth-rate achievable by a cell
provided enough nutrients are available). Each class represents a
scalar that must be transported by the hydrodynamic framework.
While transporting a hundred classes within a 70 compartments
model (Pigou and Morchain, 2015) was perfectly feasible, doing
the same in a CFD simulation would be prohibitively expensive.

The current paper thus makes the focus on improving the
numerical tractability of the PBM, through the use of the Method
of Moments (MOM), in order to increase the allowed level of spa-
tial accuracy. Instead of performing a direct resolution of the pop-
ulation balance equation, the MOM describes the evolution of the
first moments of a Number Density Function (NDF). However, it
will be of interest to perform a reverse operation and to recover
an approximation of the NDF from a finite set of its moments; this
is known as a truncated moment problem (Abramov, 2007).

Many methods are available to tackle this problem. A review of
such methods is available (John et al., 2007) though new methods
or improvements are available since its publication. More recently,
Lebaz et al. (2016) compared the most common approaches which
are Kernel Density Element Method (KDEM), Spline-based method,
and the Maximum Entropy (MaxEnt) method applied to the case of
a depolymerization process. The KDEM approximates the unknown
NDF as the sum of weighted Kernel Density Functions (KDF). The
identification of the weights is performed through a constrained
minimization procedure, which requires a high number of
moments to prevent an underdetermined problem and the multi-
plicity of solutions. The spline method (John et al., 2007) leads to
a piece-wise polynomial reconstruction, but the resulting recon-
struction is highly dependent on numerical parameters, and can
lead to negative values of the reconstructed NDF. For these reasons,
the KDEM and spline methods will be discarded in the current
work.

The MaxEnt method (Mead and Papanicolaou, 1984; Tagliani,
1999) was point out as efficient and accurate, even with a low
number of moments, by Lebaz et al. (2016). It is however

Notation

Roman
C concentration (kg.m�3)
H Shannon entropy
K biological affinity constant (kg.m�3)
L quadrature node abscissae (h�1)
m moment of distribution n (kg.m�3.h�k)
n number density function (h.kgX.m�3)
N number of resolved moments
NC number of classes
Nc number of compartments
P order of moment methods
q specific reaction rate (mol.kg�1

X .h�1)
Q flow rate (m3.h�1)
R reaction rate (kg.m�3.h�1)
T time constant of adaptation (h)
V compartment volume (m�3)
w quadrature node weight (kgX.m�3)
Y stoichiometric molar coefficient (mol.mol�1)

Subscript and superscript
~x population mean value
x� equilibrium value

xa achieved value
xA acetate
xG glucose
xi inhibition
xk moment order
xm compartment index
xn compartment index
xO oxygen
xT threshold value

Greek symbols
e turbulent energy dissipation rate (W.kg�1)
j PDF kernel
l growth rate ðgX :g�1

X :h�1Þ
m kinematic viscosity ðm2:s�1Þ
u polynomial coefficient
U specific uptake rate ðg:g�1

X :h�1Þ
W environmental limitation coefficient
r standard deviation (h�1)
f rate of change of specific growth rate (h�2)
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