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h i g h l i g h t s

� The concept of extents is generalized to distributed reaction systems.
� Each extent describes a rate effect subject to advection and outlets.
� Extents are defined for various tubular reactors and reactive separation columns.
� Concentrations and extents are expressed as linear transformations of each other.
� The transformations use stoichiometry and knowledge of transferring/diffusing species.
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a b s t r a c t

In the chemical industry, a large class of processes involving reactions can be described by partial differ-
ential equations that depend on time and on one or more spatial coordinates. Examples of such dis-
tributed reaction systems are tubular reactors and reactive separation columns. As in lumped reaction
systems, the interaction between the different rate processes (reactions, mass and heat transfers, and
inlet and outlet flows) complicates the analysis and operation of distributed reaction systems. In this arti-
cle, the concept of extents, which has been applied to decouple the rate processes in lumped reaction sys-
tems with one or multiple phases, is generalized to distributed reaction systems. Both the concept of
extents and a linear transformation to extents are detailed for various configurations of tubular reactors
and reactive separation columns, as well as for a more generic framework that is independent of the con-
figuration and operating conditions. The application of extents to distributed reaction systems is illus-
trated through several case studies that show how the effect of each rate process can be expressed in
terms of a corresponding extent.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The chemical industry uses chemical reactions and physical
transformations to convert raw materials and energy into prod-
ucts. To operate these industrial chemical processes in a reliable
and efficient manner, process models are typically used for design,
monitoring, estimation, control and optimization. If each phase can
be assumed to be well mixed, a dynamic model describes the time
evolution of the system via ordinary differential equations (ODEs).
The model consists of material and energy balances and includes
information about the reactions (stoichiometry, kinetics, heats of
reaction), the transfer of mass and energy within and between
phases, and the operating conditions (inlet and outlet flows, initial
conditions and exchanges with the environment). Details about

chemical reactor modeling and analysis can be found in many text-
books, for example Levenspiel (1999), Froment et al. (2010),
Rawlings and Ekerdt (2015).

The modeling of the rate processes at work is often challenging.
The difficulty arises from the coupling between the different chem-
ical and physical effects, as in the case of two-phase reaction sys-
tems, where the different reactions are inherently coupled with
each other and with the mass-transfer phenomena. For lumped
reaction systems, the concept of vessel extents is very useful, as
the transformation of the original states (concentrations and tem-
peratures) to these extents allows isolating the contributions of the
reactions, mass transfers and inlet flows (Amrhein et al., 2010;
Bhatt et al., 2010; Rodrigues et al., 2015). The concept of extents
for lumped systems has already been applied to model identifica-
tion (Bhatt et al., 2011; Bhatt et al., 2012; Srinivasan et al., 2012;
Billeter et al., 2013), data reconciliation (Srinivasan et al., 2017)
and state estimation (Srinivasan et al., 2016) and is currently being
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investigated for control (Rodrigues et al., 2015) and optimization
(Rodrigues et al., 2016; Rodrigues et al., 2017).

In this article, the assumption of perfect mixing within each
phase is relaxed. Inhomogeneity can result from either a technical
flaw, as in reactors with poor mixing, or a technical choice, as in
tubular reactors (Friedly, 1972), micro-reactors (Kockmann et al.,
2011), reactive distillation columns (Taylor and Krishna, 2000) or
reactive absorption columns (Kenig and Seferlis, 2009). These dis-
tributed reaction systems (resolved in time and space) are typically
described by partial differential equations (PDEs) that couple the
effects of reaction, mass transfer, diffusion, and initial and bound-
ary conditions. The coupling of distributed reaction systems in
time and space complicates their analysis. These systems are also
complex to analyze due to the existence of boundary conditions,
which are not present in lumped reaction systems.

The concept of extents, and of variant and invariant states in
general, which aims at decoupling the various rate processes at
play and thereby simplifying their analysis, has hardly been
applied to distributed reaction systems. Yet, an early work
describes the use of variant and invariant states for the simulation
of a plug-flow reactor, resulting in reduced computational time
(Waller and Mäkilä, 1981). Furthermore, a transformation to
reaction-invariant compositions in reactive distillation columns
was proposed to reduce the number of degrees of freedom in pro-
cess design (Ung and Doherty, 1995). This transformation to reac-
tion invariants was later applied to reactive chromatography and
membrane reactors (Grüner et al., 2006).

This article considers the modeling of distributed reaction sys-
tems from a methodological standpoint. The concept of extents
and the transformation of the original states (concentrations and
temperature) to these extents are discussed. Emphasis is given to
the conceptual understanding of extents. The introduction of the
concept of extents for distributed reaction systems is expected to
help design and operate this class of processes.

The article is organized as follows. Section 2 presents the exten-
sion of the concept of extents from a lumped reaction system
described by ODEs to a simple plug-flow reactor described by PDEs.
Section 3 describes tubular reactors in terms of extents for
different situations (single-phase, multiphase, one-dimensional,
two-dimensional). Section 4 introduces the concept of extents for
reactive separation columns, such as packed and tray columns.
Section 5 presents the concept of extents for a generic multiphase
distributed reaction system and summarizes in table form all the
formulations introduced in this paper. Section 6 discusses four case
studies illustrating the use of extents, while Section 7 concludes
the paper.

2. From lumped to distributed reaction systems

2.1. Single-phase lumped reactors

In single-phase lumped reactors, the concentrations and tem-
perature are functions of the time t only, the spatial coordinates
being eliminated under the assumption that the phase is isotropic
(well mixed).

2.1.1. Material balance equations, nðtÞ
Let us consider a lumped reactor. The S-dimensional vector of

numbers of moles nðtÞ is described by the ODE

d
dt

nðtÞ þxðtÞnðtÞ ¼ NTrvðtÞ þWinðtÞuinðtÞ; nð0Þ ¼ n0; ð1Þ

where rvðtÞ :¼ VðtÞrðtÞ, with rðtÞ the R-dimensional vector of reac-
tion rates and VðtÞ the volume, N is the R� S stoichiometric matrix,
uinðtÞ is the p-dimensional vector of inlet mass flowrates, WinðtÞ is
the S� p inlet composition matrix, whose jth column is

Win;jðtÞ :¼ M�1
w

�Win;jðtÞ, with Mw the S-dimensional diagonal matrix
of molecular weights and �Win;jðtÞ the S-dimensional vector of

weight fractions of the jth inlet, and xðtÞ :¼ uout ðtÞ
mðtÞ is the inverse of

the residence time, with uoutðtÞ the outlet mass flowrate and mðtÞ
the mass. The concentrations cðtÞ can be computed as nðtÞ

VðtÞ. The initial

conditions n0 are denoted IC and the inlet flow conditions related to
Win and uin are denoted IFC.

Remark 1. Throughout the paper, the rates associated with each
rate process are modeled as signals that vary in time (and space),
which hides the fact that the rates depend on concentrations and
temperature that vary in time (and space). For example, in this
lumped reactor, the reaction rates are written as rðtÞ, but in fact
they depend on cðtÞ and TðtÞ. For the sake of conciseness, the time
dependence of the various variables is omitted as much as possible
in the remainder.

2.1.2. Effect of the outlet on the IC and IFC
The effect of the outlet flow on the initial and inlet flow condi-

tions can be computed as niicðtÞ by solving the ODE

d
dt

niic þxniic ¼ Winuin; niicð0Þ ¼ n0: ð2Þ

2.1.3. Vessel extents of reaction xrðtÞ
The vessel extent of reaction xr;iðtÞ represents the amount of

material that has been processed by the ith reaction and is in the
vessel at time t, that is, discounting for the amount that has left
the vessel via the outlet. These vessel extents are described by
the ODE

d
dt

xr þxxr ¼ rv ; xrð0Þ ¼ 0R: ð3Þ

Eq. (1) can be reconstructed from Eqs. (2) and (3) using

n ¼ Lxr þ niic; ð4Þ
with L ¼ NT.

2.1.4. Transformation to vessel extents
The vessel extents xr can be computed from the numbers of

moles n by inversion of Eq. (4). If rankðLÞ ¼ R, then LTWL is
invertible for any positive definite weighting matrix W of dimen-
sion S, and the vessel extents of reaction are given by the linear
transformation

xr ¼ T dn; ð5Þ

with T :¼ LTWL
� ��1

LTW, and dn :¼ n� niic . Note that, for W ¼ IS,
T is the Moore-Penrose pseudo-inverse of L.

Remark 2. The vessel extents xrðtÞ described by ODE (3) and
computed from nðtÞ via Eq. (5) represent the R reaction variants in
the system. As shown in Rodrigues et al. (2015), one can describe
and compute from nðtÞ additional vessel extents (of inlet flows and
initial conditions) as well as invariant quantities.

2.1.5. Combined material and heat balance equations
The combined material and heat balance equations are

described in Appendix A.1.

2.2. Single-phase plug-flow reactors

In single-phase plug-flow reactors, the concentrations and tem-
perature are functions of the spatial coordinate z and the time t. It
is assumed that the inlet of the reaction system is located at z ¼ 0
and z is positive along the reactor length.
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