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h i g h l i g h t s

� The scale-up effects with varying
reactor size are investigated with CFD
simulations.

� Hydrodynamic behaviors in different
MTO reactors are successfully
predicted.

� Prediction of reaction behavior
deviates from experiments gradually
with reactor size.
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a b s t r a c t

Scale-up of fluidized bed reactors has long been regarded as a big challenge in chemical reaction engi-
neering. While traditional scaling theories are mostly based on hydrodynamics similarity, computational
fluid dynamics (CFD) aided approach allows direct coupling between hydrodynamics and reaction factors
and is expected to speed up the experiment-based scale-up process with lower cost. In this study, we aim
to investigate the scale-up effects through simulations of a series of methanol-to-olefins (MTO) reactors
of different sizes. The two-fluid model and energy-minimization multi-scale (EMMS)-based drag models
are combined in simulations. The fluidization characteristics in terms of flow structures, velocity distri-
bution, mass fractions of gaseous product and coke distribution are presented against available experi-
mental data for different-sized reactors. It is found that typical hydrodynamic features can be
reasonably predicted, while the prediction of reaction behavior shows growing discrepancy with increas-
ing reactor size. Possible reasons are discussed in the last section along with future work presented for
scale-up studies.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Scale-up of fluidized bed reactors has long been regarded as a
big challenge in chemical reaction engineering. Traditional
approach focuses on searching scaling laws with various sets of
dimensionless numbers (Rüdisüli et al., 2012; Glicksman, 1998),
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where the hydrodynamic similarity is mostly regarded. The cou-
pling between reactions and hydrodynamics is however often
neglected (Ye et al., 2015).

Scale-up of the methanol-to-olefins (MTO) reactor that was
developed by Dalian Institute of Chemical Physics (DICP) is a good
example to understand such challenge (Tian et al., 2015). The MTO
is a typical gas catalytic process, where both reactants and prod-
ucts are in gas phase, and the reactions take place over the surface
of catalytic particles. The development of MTO process borrows
ideas from the reaction-regeneration configuration of the modern
fluid catalytic cracking (FCC) units. However, differences still exist
between MTO and FCC processes, which constitute the challenge
for scale-up (Lu et al., 2016; Ye et al., 2015). Firstly, different cata-
lysts: SAPO-34 zeolite catalyst with small pores was used in DICP’s
MTO (or, DMTO) process, and it shows the highest selectivity to
ethylene provided with certain coke deposition. In contrast, the
FCC process employs the zeolite Y catalyst with larger pores which
are not easily blocked by coke deposition. Secondly, different reac-
tors: a densely fluidized bed reactor such as bubbling or turbulent
fluidized bed with much longer residence time than that of the FCC
riser reactor was preferred for DMTO. Thirdly, both the methanol-
to-olefins reactions in reactor and coke burning in regenerator are

exothermic, so there is no strict requirement for DMTO on heat-
coupling between the reactor and regenerator as in FCC.

As shown in Fig. 1, before the commercialization, the scale-up of
DMTO has experienced three-stage experiments on the micro-
scale (or lab-scale), pilot-scale and demo-scale fluidized bed reac-
tors, respectively. The micro-scale one was operated under the
regime of bubbling fluidization in a batch manner without catalyst
circulation. Its experimental results were used to evaluate catalyst
performance, establish the network of reaction kinetics and help
identify the optimal operation window for the design of pilot-
scale fluidized bed reactor, such as the optimal gas-catalyst contact
time. The operating regime of pilot-scale reactor is the same as the
micro-scale one, reflecting their hydrodynamic similarity. In addi-
tion, a fluidized bed regenerator, which was connected with the
reactor through a standpipe, was especially tested in the
pilot-scale reactor to mimic the continual circulation of catalysts
in industry. The fluidization performance and stripping attrition
of catalyst were preliminarily investigated in this stage. In the
demo-scale reactor, however, the operating velocity of gas was
increased for high throughput. A different fluidization regime,
i.e., turbulent fluidization, was hence adopted. Thus the catalyst
circulation, stripping attrition and heat exchange and so on

Nomenclature

a inertial term, m/s2

C concentration, mol/L
CD0 standard drag coefficient for an individual particle
db bubble diameter, m
dp particle diameter, m
f volume fraction of dense phase
Gs solid flux, kg/(m2 s)
HD heterogeneity index (HD = b/b0)
Is solid inventory, g
ki rate constant, L/(gcat � s)
M molar weight, g/mol
p pressure, Pa
Ri reaction rate, g/(gcat � s)
Re Reynolds number, qgeg|ug-us|dp/lg

u real velocity, m/s
Ug superficial velocity, m/s
wcoke coke content, %
Y mass fraction

Greek letters
b drag coefficient with structure in a control volume,

kg/(m3 s)
b0 drag coefficient without structure in a control volume,

kg/(m3 s)
eg voidage
es solid volume fraction
g conversion ratio, %
l viscosity, Pa s
q density, kg/m3

Subscripts
c dense phase
f dilute phase
g gas phase
s solid phase
i lump in reaction kinetics model

Fig. 1. Scale-up of DMTO (DICP’s MTO) fluidized bed reactor (Tian et al., 2015).
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