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h i g h l i g h t s

� Instabilities in bubbly gas-liquid flows are investigated.
� A shared-pressure two-fluid model is applied to low bubble loadings.
� Inclusion of virtual mass force leads to change in the nature of the system.
� Physical phase heterogeneities follow the numerically-triggered instabilities.
� Implications for using two-fluid models for predicting bubbly flows are discussed.
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a b s t r a c t

In this paper we look at instabilities in bubbly gas-liquid flows and investigate the emergence and char-
acteristics of phase heterogeneities. We apply a shared-pressure two-fluid model to low bubble loadings
and demonstrate the existence of persistent gas fraction instabilities of a characteristic size larger than
the applied computational grid. In particular, we investigate the influence of a virtual mass effect on
the stability of the two-fluid model and we demonstrate a change in the emergence and the dynamics
of the phase heterogeneities. The change is accounted to a difference in the degree of hyperbolicity
due to the inclusion of the virtual mass force. Furthermore, the results indicate that an initial instability,
concluded as numerical in its character, evolves into a state with a physical character of the hetero-
geneities. We discuss implications of the existence and dynamics of the heterogeneities and the impor-
tance of the numerical behavior for interpretation of the results. In particular, we argue that underlying
characteristics of the model cannot and should not be concealed with additional sub-models (such as
momentum exchange terms) but must be acknowledged in the analysis of results from the two-fluid
model for bubbly flows.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Bubbly gas-liquid flows are important for many industrial pro-
cesses due to their advantageous characteristics of heat and mass
transfer. However, the complexity of the flow and the extensive
range of flow regimes in combination with large industrial devices
make computational modeling of such systems a major challenge.
For full scale simulations, the computational burden makes it
unfeasible to use Direct Numerical Simulation (DNS)-like methods
where the interface between the two-phases is directly tracked or
reconstructed. Examples of the latter include the volume of fluid
method (VOF) (Noh and Woodward, 1976; Hirt and Nichols,
1981), the level set method (LS) (Osher and Sethian, 1988;

Sussman et al., 1994) or front tracking (Unverdi and Tryggvason,
1992). As a consequence of the system sizes, typically much larger
than the length scales relevant for a single bubble or gas entity, it is
necessary to rely on a simplified representation, such as the two-
fluid model (Lahey and Drew, 1989; Ishii, 1990; Prosperetti and
Tryggvason, 2007).

In the two-fluid method, both phases are described in an Eule-
rian frame of reference. The fluids, in the present case gas and liq-
uid, are treated as interpenetrating continua that coexist in every
computational volume. The proportions of the respective phases
are described as a volume fraction and the flow properties are
assumed homogeneous for each phase in each discrete cell. Due
to such a local homogenization of the flow, information about
the interface between the phases is discarded. For a bubbly flow,
this means that the local characteristics such as the size of bubbles
is not predicted and that the dynamic behavior of the two phases is
also only recovered in an average sense.
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Additionally, the governing equations of the two-fluid model
are typically derived under the assumption of a slow variation in
space of the phasic properties, for example the volume fractions
of the phases (Lahey and Drew, 1989). Such a requirement is an
attempt to reach the separation of scales, where the void fraction
fluctuations should not rapidly change on the scale of the compu-
tational mesh. The assumption of a slow variation is a major draw-
back when it comes to the applicability of the two-fluid model. An
assumption of small gradients, often neglected in practice, limits
the validity of the model to bubbly flows of low bubble loadings.
For flow regimes with higher gas fractions, such as slug or churn
flow, the computational cells would have to be enlarged to the
extent that no relevant fully dimensional resolution could be
achieved. For some applications, a coarse mesh and one dimen-
sional (1D) conservation equations are of relevance to compute
macroscopic system properties (Prosperetti and Tryggvason,
2007). In this paper we shall consider low ranges of the void frac-
tion (i.e. the gas fraction) in an attempt to fulfill the discussed
criteria.

Although the phases are represented in a spatially averaged
sense, the dynamic behavior of the phase fractions and velocities
is potentially important both for mass and heat transfer applica-
tions. It is thus of interest to accurately capture possible variations
and also the phenomena that contribute to the appearance of non-
uniform distributions of the void fraction. We will refer to such a
non-uniform state in the void distributions as heterogenities, i.e.
heterogeneous in terms of the spatially averaged phase fraction
fields. In contrast to fully resolved interfaces in VOF or LS, the
two-fluid formulation can only capture meso-scale fluctuations,
here used to denote heterogenities larger than the computational
cell but smaller than the system size. The meso-scales are through-
out the paper significantly larger than the actual bubble size, and
thus in accordance with the requirement of slow variations over
the averaging volume.

From experiments, it is well established that initially homoge-
neous bubbly flows can become heterogeneous at high enough
bubble loadings (Mudde et al., 2008). The physical mechanisms
responsible for this transition are however not yet fully under-
stood. There have been several attempts to identify those mecha-
nisms based on mathematical or numerical analyses of two-fluid
models, resulting in a range of possible, and sometimes even con-
flicting, suggestions for routes leading to an unstable behavior in
the sense of fluctuating values of the phase fractions or velocities
(Sankaranarayanan and Sundaresan, 2002; Lucas et al., 2005,
2006; Monahan and Fox, 2007b; Yang et al., 2007; Chen et al.,
2009; Yang et al., 2010). We will refer to the term instability for
the cause and transition of the homogeneous to the heterogeneous
void fraction distribution.

Complementary to the theoretical studies of flow regime transi-
tions, many authors have attempted to capture the experimentally
demonstrated change from uniform to heterogeneous flow based
on simulations. Notably, Monahan et al. (2005) simulated the
experiments by Harteveld (2005) with a variety of momentum
exchange terms and proposed the need for a large number of terms
to be accounted for to accurately capture the transition. As noted in
another paper from the same group (Monahan and Fox, 2007a), the
simulations can lack stability (in the sense of reaching a physical
and convergent solution) in the limit of small bubbles, which is
particularly interesting as the two-fluid model is derived under
the assumption of sufficiently small bubbles and slow variations
relative to the averaging scales. As made evident from the refer-
enced simulations, not all properties of the two-fluid model are
well understood. This is especially pertinent for the dynamic
behavior of heterogeneities in fully-dimensional (3D) flow simula-
tions, where an excessive use of additional model terms is likely to
significantly contribute with a diffusivity, in effect an excessive vis-

cosity, and thus overshadow potential fluctuations of phase
fractions.

In relation to the discussed numerical issues, it is known that
the degree of hyperbolicity affects the numerical stability of a
two-fluid model (Drew et al., 1979; Lahey et al., 1980; Dinh
et al., 2003) and it is therefore of interest for the current investiga-
tion of the dynamics of the two-fluid model. In formulations based
on 1D conservation equations, issues with instabilities have been
seen for models with no viscosity (Lhuillier et al., 2010). As a rem-
edy, a mathematical or numerical regularization may be applied to
achieve hyperbolicity (Dinh et al., 2003). A numerical regulariza-
tion is, in its simplest form, induced from a coarse spatial dis-
cretization which results in much numerical diffusion as
discussed by Pokharna et al. (1997). The need for viscosity (physi-
cal or numerical) is confirmed by linear stability analysis based on
simplified models, where it can be shown that such terms enhance
the stability of the short wave lengths (Arai, 1980).

Another way to deal with the model instabilities is to include
specific momentum exchange terms directly aimed to stabilize
the solution in the numerical sense. An example of this is to
include the virtual mass force in the formulation of the governing
equations. The virtual mass force corresponds to the force exerted
on a moving object immersed in a fluid when it accelerates rela-
tive to its surrounding, and hence must also accelerate some of
the surrounding fluid. Although the effect of that force may be
of little significance to the final results, the virtual mass force
can have a profound effect on the numerical behavior of the prob-
lem (Lahey et al., 1980; Toumi and Kumbaro, 1996). Theoretical
studies on 1D models for various formulations of the virtual mass
force confirm that hyperbolicity is obtained, but typically only for
a sufficiently low void fraction (Prosperetti and Satrape, 1990).
Such a finding is again of interest and importance for the two-
fluid model applied to low bubble loadings and small bubbles as
it potentially affects the dynamics of the heterogeneities. As
relates to the dynamics of bubbly flow, studies have shown that
the virtual mass force is crucial for accurate predictions of tran-
sient phenomena such as a bubble plume oscillation (Mudde
and Simonin, 1999; León-Becerril et al., 2002). As such, an inclu-
sion of the virtual mass force has multiple advantages, both
improving numerical characteristics and the predictability of tran-
sient behavior.

In effect, the two-fluid model is typically accompanied with a
turbulence model. The turbulence model enhances stability of
the two-fluid model due to existence of a significant turbulent vis-
cosity. However, to rely on this approach is not straightforward if
the two-fluid model is applied to a successively refined mesh, as
- in contrast to single-phase turbulence - meso-scale instabilities
in disperse two-phase flows typically originate from the very small
scales, which are increasingly well resolved as the cells become
smaller (Agrawal et al., 2001; Ström et al., 2015). Furthermore, tur-
bulence models, such as Reynolds-averaged Navier-Stokes (RANS)
models, are often applied to the continuous phase, not necessarily
taking the effect of the dispersed flow into account. There is still no
consensus on how to adapt well-established single-phase two-
equation turbulence models to properly account for complex
two-phase phenomena, such as bubble-induced turbulence
(Rzehak and Krepper, 2013). In relation to the virtual mass force,
Lhuillier et al. (2013) argue that it needs to be combined with a
model for the turbulent velocity fluctuations in order to guarantee
hyperbolicity. In a similar manner, Stewart (1979) demonstrate
that the two-fluid equations are well-behaved given a large enough
momentum exchange between the phases and a coarse enough
mesh. However, it should be emphasized that such a finding does
not guarantee that the underlying equations are stable, but rather
that the model is well-behaved on a coarse mesh without address-
ing the underlying ill-posedness.
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