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h i g h l i g h t s

� A DEM-based model for the analysis of energy transition is proposed.
� The approach is tested in granular and particle-fluid systems respectively.
� The connection between energy transitions and structure formation is discussed.
� The relation between the energy transition and the contact between particles is illustrated.
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a b s t r a c t

Granular and particle-fluid flows are widely observed in nature and in industry. Their behaviors are
determined by the injection of energy and the subsequent cascade of energy. This work presents a
DEM-based approach for the analysis of energy transitions in such flows. The approach can consider
the energy injection, dissipation and conversion due to driving forces such as particle-fluid interactions
and the gravitational force, particle-particle/wall collisions and frictions. The effectiveness is demon-
strated in two systems respectively and the transient and averaged energy transitions are discussed.
The results reveal the connection between the formation of a cluster and the variation of energy in flu-
idized beds. From the viewpoint of energy transition, the results also illustrate the minimization of
energy dissipation, the startup of fluidization and the particle flow distribution. Furthermore, the corre-
lation of the contact between particles and the energy transition is demonstrated. The findings should be
useful for the understanding of structure formation in fluidized beds and for industrial applications.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Granular and particle-fluid flows are ubiquitous in nature and
in industry. They tend to stop because the interaction between
macroscopic particles, different to molecular gases, is inelastic
and cannot be driven by normal thermal agitation. To keep parti-
cles moving, energy should be injected to count-balance the energy
dissipation. Therefore, energy injection by, for example, gravity,
vibration or flowing fluids and energy dissipation are crucial in
understanding and controlling such flows. Naturally, the cascade
of energy largely determines the characteristics of flow behaviors
such as the state of granular matter (Jaeger and Nagel, 1992;
McNamara and Luding, 1998), flow regimes (Li and Kwauk, 1994;
Kuang and Yu, 2011; Hou et al., 2012, 2016), wear (Zhang et al.,
2012; Chu et al., 2014; Chen et al., 2015) and attrition (Neil and

Bridgwater, 1994; Ning and Ghadiri, 2006; Yao et al., 2006; Hare
et al., 2011). However, such information of energy flow is limited
particularly at a microscopic particle scale and it is still a challenge
to understand the macroscopic behaviors of particulate flows from
microscopic interactions.

For the analysis of energy flow, there are largely two groups of
approaches available to obtain useful information. One group by
experimental approaches has been used to study energy loss by
measuring particle motion (see, e.g., Burton et al., 2013;
Nordstrom et al., 2014), particle position and the force between
particles and walls (see, e.g., Sack et al., 2013). Nonetheless, these
measurements need delicate designs and experimental devices.
Hence, it is costly to comprehensively carry out such experimental
studies of energy dissipation in granular systems, and in many con-
ditions, it is difficulty, if not impossible, to obtain some important
information such as force transmission or the variation of force
chains (Drescher and De Josselin, 1972; Tordesillas, 2007; Zheng
and Yu, 2014) and the evolution of microstructures (Mueth et al.,
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2000; Lasinski et al., 2004; Alam and Luding, 2005; Sun and
Sundaresan, 2011; Kondic et al., 2012; Ozel et al., 2013).

The other group by numerical approaches has made significant
progress in the past decades and is becoming a cost-effective rou-
tine to study complex granular systems. This group covers both
continuum and discrete approaches. As a representative multiscale
method, the energy-minimization multi-scale (EMMS) model is a
typical example which has been unified with the two-fluid model
(Song et al., 2014). It distributes energy dissipation through the
compromising concept and the solution of two stability conditions
(Li and Kwauk, 1994). However, the EMMS model has some limita-
tions. For example, the important correlation between flow condi-
tions and the virtual cluster size has not been well formulated in a
general way (Wang et al., 2008). There were many efforts dedi-
cated to formulate constitutive relations for the multiscale gas-
solid flow (Agrawal et al., 2001, 2013; Sankaranarayanan et al.,
2002; Igci et al., 2008; Moreau et al., 2010; Parmentier et al.,
2012; Ozel et al., 2013; Masi et al., 2014). Alternatively, starting
from particle scale interactions, discrete element method (DEM)
or its combined version with computational fluid dynamics (CFD)
has been widely used to study particulate and related multiphase
flow systems (Zhu et al., 2007, 2008). Among those studies, many
efforts were dedicated to elucidating the energy flow characteris-
tics related to the impact of a particle stream onto a pile (Wu
et al., 2007), the deformation of dense granular specimen (Hadda
et al., 2013), vibrated granular media (McNamara and Luding,
1998), screw feeder (Hou et al., 2014) and pneumatic conveying
(Kuang et al., 2012), to name but a few. These studies provide very
useful information for understanding particulate flow and the for-
mation of packings and for improving energy efficiency of indus-
trial processes. Somehow, little effort was dedicated to the study
of energy flow in the important fluidization systems (Kunii and
Levenspiel, 1991), though it is known that energy flow plays a con-
siderable role in the formation of clusters and streamers
(Campbell, 1990; Sundaresan, 2000; Agrawal et al., 2001).

In fact, the dynamic behaviors of particles in fluidized beds are
governed by the complicated interactions between individual par-
ticles, between particles and walls, and between particles and sur-
rounding fluids. Generally, the behaviors of gas fluidization can be
classified into four groups A, B, C and D (Geldart, 1973), depending
on the properties of relevant fluid and particles. Group B particles
are often called coarse particles and could be fluidized when the
inlet gas velocity uf is above the minimum fluidization umf. Thus,
two broad flow regimes exist including fixed and fluidized flow
regimes, where the fluidized flow regime can be further classified
into bubbling (or slugging), turbulent, fast and pneumatic convey-
ing (Bi and Grace, 1995). These flow regimes have been observed
from experiments or numerical simulations. However, how the
energy is dissipated in different flow regimes is not well under-
stood. Hence, it is important to unravel energy transitions in flu-
idized beds by using particle scale information for insight
understanding and optimal design and control of fluidization
systems.

This work presents a DEM-based approach suitable for the anal-
ysis of energy transitions in granular and particle-fluid flows. It can
consider the energy injection, dissipation and conversion due to
driving forces such as particle-fluid interactions and the gravita-
tional force, particle-particle/wall collisions related to plastic and
elastic deformation and sliding/static and rolling frictions. The
capability of the approach is demonstrated in two typical systems
for coarse particles. First, the transient evolution of energy is dis-
cussed in the formation of a packed bed driven by the gravitational
force. The energy balance is correctly observed and the spatial and
temporal distribution of the variation of energy is illustrated. Sec-
ond, the transitions of flow regimes and the related energy flow are
discussed in a fluidized bed driven by particle-fluid interaction

forces. Key flow regimes are successfully reproduced and reason-
ably classified by both the overall pressure drop and the effective
contact force. Based on the classification, the characteristics of
energy flow are discussed. The findings should be useful for the
understanding of structure formation in fluidized beds and for
industrial applications.

2. Model description

Here, the settling process is only composed of a discrete solid
phase, but the fluidization is composed of a discrete solid phase
and a continuum gas phase. The solid phase is described by DEM.
Thus a particle has two types of motion: translational and
rotational. While moving, the particle may interact with its neigh-
boring particles or walls and with the surrounding fluid, through
which the momentum and energy exchange takes place. At any
given time t, the equations governing the motions of particle i of
massmi and radius Ri in a particle-fluid flow system can be written
as:

midvi=dt ¼
X
j

ðfe;ij þ fd;ijÞ þ fpf ;i þmig; ð1Þ

and

Iidxi=dt ¼
X
j

ðTt;ij þ Tr;ijÞ; ð2Þ

where vi and xi are the translational and rotational velocities of
particle i, and Ii =ð2=5miR

2
i Þ is the moment of the inertia of the par-

ticle. The forces involved are: particle-fluid interaction force fpf,i, the
gravitational force mig and the forces between particles (and
between particles and walls) which include the elastic force fe,ij,
and viscous damping force fd,ij. The torque acting on particle i due
to particle j includes two components: Tt,ij which is generated by
the tangential force and causes particle i to rotate, and Tr,ij which,
commonly known as the rolling friction torque, is generated by
asymmetric normal contact force and slows down the relative rota-
tion between contacting particles (Zhou et al., 1999; Zheng et al.,
2011). If particle i undergoes multiple interactions, the individual
interaction forces and torques are summed up for all particles inter-
acting with particle i. The equations to calculate the particle-
particle interaction forces and torques, and particle-fluid interaction
forces are listed in Table 1. Most of the equations have been well
established as, for example, reviewed by Zhu et al. (2007). Accord-
ing to the equations in Table 1, the contact forces are related to

Table 1
Equations to calculate the forces and torques on particle i.

Force or torque Equation

Normal elastic force, fen,ij � 4
3 E

� ffiffiffiffiffi
R�p

d3=2n n
Normal damping force, fdn,ij �cnð6mijE

� ffiffiffiffiffiffiffiffiffiffi
R�dn

p
Þ1=2vn;ij

Tangential elastic force, fet,ij �lsjfen;ijjð1� ð1� dt=dt;maxÞ3=2Þd̂t
Tangential damping force, fdt,ij �ctð6lsmijjfen;ijj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� dt=dt;max

p
=dt;maxÞ1=2vt;ij

Coulomb friction force, ft,ij �lsjfen;ijjd̂t
Torque by tangential forces, Tt,ij Rij � ðfet;ij þ fdt;ijÞ
Rolling friction torque, Tr,ij lr;ijjfen;ijjx̂n

ij

Particle-fluid drag force, fd,i 0:125Cd0;iqfpd
2
pie2i jui � vijðui � viÞe�x

i

Pressure gradient force, fpg,i �Virpi

Where 1=mij ¼ 1=mi þ 1=mj , 1=R
� ¼ 1=Ri þ 1=Rj , E

� ¼ E=½2ð1� v2Þ�, x̂n
ij ¼ xn

ij=jxn
ijj,

dt ¼ jdt j, d̂t ¼ dt=jdt j, Rij ¼ Riðrj � riÞ=ðRi þ RjÞ, dt;max ¼ lsdnð2� vÞ=ð2ð1� vÞÞ,
vij ¼ vj � vi þxj � Rj �xi � Ri , vn;ij ¼ ðvij � nÞ � n, vt;ij ¼ ðvij � nÞ � n,
ei ¼ 1�Pkv

i¼1Vi=DV , x¼3:7�0:65 exp½�ð1:5� log10ReiÞ2=2�, Cd0;i ¼ð0:63þ4:8=
Re0:5i Þ2, Rei ¼qf dpieijui�vij=lf .
Note that tangential forces (fet,ij + fdt,ij) should be replaced by ft, ij when dt P dt;max.
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