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h i g h l i g h t s

� The modeling method combines first principle models and the Gaussian process model.
� Handling the model mismatch can yield more accurate representation of the system.
� Expected improvement based control improves the economy of the process.
� Within-cycle control handles disturbances during the cycle.
� Experimental and simulation studies confirm applicability of the proposed method.
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a b s t r a c t

Membrane fouling can affect the performance of the membrane-based filtration. Fouling thus increases
operational costs as a result of permeate flux decline and can be accompanied by increased energy load
due to higher transmembrane pressure requirements needed as driving force. This work presents a mod-
eling framework that combines first principle models with Gaussian process model and aims to account
for model discrepancy due to the effect of fouling on the system from previous cycle of operation. Based
on the expected improvement algorithm, a cycle-to-cycle in conjunction with a within-cycle optimiza-
tion is proposed to handle the long duration of the operation to achieve the most economical operation
in terms of energy load. Simulation studies as well as experimental studies have been carried out to show
the applicability of the proposed method.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Membranes are widely used in drinking water applications to
achieve improved removal of particulate matter, natural organic
matter and salinity in water. The benefits of membrane based sep-
aration include low energy load, high selectivity and ease of oper-
ation (Farahbakhsh and Smith, 2006). Membrane-based
technology also allows a smaller footprint for the treatment facili-
ties compared to conventional treatment processes. As a result dif-
ferent types of membrane systems such as microfiltration (MF),
ultrafiltration (UF), nanofiltration (NF), and reverse osmosis are
being increasingly applied to various industries such as food, phar-
maceutical and chemical industries.

In membrane filtration the transmembrane pressure (TMP) dif-
ference forces the fluid and smaller particles through the mem-
brane pores which then leave the system as permeate. The large

particles are retained on the feed side. The filtration operation
includes the dead-end-filtration and cross-flow-filtration. In
dead-end-filtration, the feed flows parallel to the membrane pores.
This operation is effective if the concentration of particles to be
removed is low or the packing tendency of the filtered material
does not produce a large pressure drop across the filter medium.
In the cross-flow-filtration the feed flows perpendicular to the
pores, rather than into it. The advantage of this is that the filter
cake is substantially washed away during the filtration process,
increasing the length of time that a filter unit can be operational.
It can be operated continuously in contrast to the dead-end-
filtration which is operated batch-wise.

Membrane fouling, which is the result of the accumulation of
materials called foulants on the surface and/or in the pores of the
membranes, can affect the performance of the membrane-based
filtration. Many mechanisms contribute to membrane fouling,
and their relative importance depends on the specific process. Six
principal fouling mechanisms have been identified (Guo et al.,
2012), including, (i) pore blocking: constriction of pore opening
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because of the deposition of particles around the pore entry, (ii)
cake formation: formation of the layer because of the concentra-
tion of the repelled particles on the feed side, (iii) organic fouling:
the dissolved organic matter attached to the membrane by adsorp-
tion, (iv) scaling: precipitation of inorganic substances on the
membrane because of hydrolysis and oxidation during filtration,
(v) biofouling: microorganisms adhering to the membrane and
resulting in biofilm formation, and (vi) concentration polarization:
back-diffusion away from the membrane induced by the concen-
tration gradient of the retained substances. All of these phenomena
reduce the process efficiency and they can be counteracted by
membrane and module design, as well as by appropriate process
control strategies (Busch et al., 2007). The typical fouling mecha-
nisms for MF and UF are pore constriction, pore blocking, and cake
formation. If the particles are smaller than the membrane pores,
they can enter and stick to the pores. If the particles are about
the same size as the membrane pores, the deposition of the parti-
cles onto the membrane surface may cause pore blocking. During
the initial stages, membrane fouling is thought to be dominated
by pore constriction and pore blocking (Chang and Fane, 2015).
These decrease the performance and potentially damage the mem-
brane. Fouling thus increases operational costs as a result of per-
meate flux decline and can be accompanied by increased energy
load due to higher TMP requirements needed as driving force.
The reversible fouling can be eliminated at least partially by aera-
tion and backwashing (Yigit et al., 2009). In the backwashing phase
the flow direction through the membrane is reversed, such that the
membrane pores are flushed with permeate. However, internal
clogging of pores by the adsorption of colloidal and dissolved
materials is more problematic, and can hardly be eliminated by
vigorous chemical cleaning. The backwashing increases the costs
of the operation. In addition, frequent chemical cleaning of fouled
membranes leads to rapid deterioration of membrane perfor-
mance, shortened service life, and increased costs. The efficient
use of fouling controlling strategies can reduce the energy demand
and other associated operational costs, and improve the sustain-
ability of membrane based operation. This can be accomplished
by optimizing the operation of membrane filtration processes
through process control.

In industrial practice the filtration systems are usually con-
trolled to meet the desired net flux. However the high complexity
of the filtration process poses a challenge in control of the process.
It is characterized by the periodic change between filtration and
backwashing, by the drift of membrane permeability due to mem-
brane fouling, and by a high-number of disturbances, including
variations of temperature or solid concentration. Furthermore, in
most cases, only the overall TMP across an entire membrane mod-
ule is measured and thus that little information is available to
describe the process. Development of models gives insight into
the effects of control on the process and Smith et al. (2006) pre-
sented an online approach in which backwashing is initiated when
the TMP has increased by a certain amount, which is advantageous
as compared to backwashing at a fixed frequency. Blankert et al.
(2006) developed a filtration model and determined the optimal
profile of the filtration flux and TMP during one filtration phase
using offline dynamic optimization. Busch et al. (2007) presented
run-to-run control of membrane filtration processes. In their work
the filtration process was divided into cycles and the model was
updated using plant measurements of previous cycle to find the
optimum manipulated variables for the cycle. Nevertheless, the
occurrence of a mismatch between the predicted energy load –
using parameters of the previous cycle – and actual current cycle
energy load was not taken into account. This mismatch was the
result of the model parameters differing with each cycle due to
fouling and has to be taken into account to obtain the best perfor-
mance of the filtration process. Robles et al. (2013, 2014) proposed

a model based control and used online measurement to monitor
the filtration through measuring the fouling rate online but sam-
pling and analytical assay are required.

The methods to model the TMP can generally be classified as
data driven or phenomenological/first-principled. First principle
models (or physical models) use prior knowledge of the system
to derive the mathematical representation that can describe the
fundamental phenomena of the filtration process. For example,
the Darcy’s law can describe the main phenomena of the trans-
membrane pressure occurring in the filtration process. However,
until now, none of the models are able to fully and satisfactorily
describe the membrane filtration process in industrial processes
(Ferrero et al., 2012; Padaki et al., 2015; Zhang et al., 2015). On
the other hand, data-driven modeling methods have been consid-
ered as useful alternatives for online prediction of flux and trans-
membrane pressure difference (TMP) in cross-flow
microfiltration processes. Data driven models can generally be
developed quickly without requiring substantial understanding of
the phenomenology. Currently, neural networks (NN) are com-
monly used in membrane filtration modeling (Chen and Kim,
2006; Cheng et al., 2008; Ghandehari et al., 2011; Kaneko and
Funatsu, 2013; Liu et al., 2009; Mirbagheri et al., 2015; Oishi
et al., 2015). In addition, statistical modeling approach such as par-
tial least squares (PLS) has also applied to membrane filtration pro-
cesses (Kaneko and Funatsu, 2013; Oishi et al., 2015; Peiris et al.,
2012). PLS modeling approaches are linear approaches and are
unable to capture the nonlinear information in the fouling mecha-
nism. NN can be used for nonlinear modeling but the determina-
tion of the network topology for a complex modeling task is still
not easy (Huang et al., 2015). Furthermore, the data-driven models
(including NN and PLS) are deterministic, so the probabilistic infor-
mation of its prediction is not provided. Accordingly, a large
amount of data samples are required mainly because it is difficult
to evaluate the prediction uncertainty of a model.

The combination of both the first-principle and the data-driven
empirical models in the hybrid model can thus be useful for control
of membrane filtration. The hybrid model structure combines both
advantages of first-principles and data-driven to enhance the pre-
diction performance. First-principles models can generally
describe the fundamental phenomena of membrane fouling.
Data-driven models, on the other hand, are suitable to predict
complex behaviors in nonlinear processes (Hwang et al., 2009).
In membrane filtration, a number of works on using hybrid models
to predict membrane fouling and performance (Hwang et al., 2009;
Piron et al., 1997) have been reported. The results showed that the
hybrid approach, as a means for complementing the description of
a physical model, to be more accurate than purely physical one.

Optimization can then be performed based on the model to
select subsequent search points. In an optimization context, this
model can be viewed as a response surface. This method is poten-
tially efficient if data collection is expensive relative to the costs of
building and searching a response surface. In the response surface
methodology a response surface is conducted and surface is
searched for likely candidate points, evaluated according to some
criterion. The expected improvement (EI) is a type of response sur-
face methodology and it is based on the Gaussian process regres-
sion model (GPRM). Conventional method is deterministic but EI
is probabilistic which takes into account the model uncertainty.
GPRM is a probabilistic tool for nonlinear regression. GPRM can
simultaneously provide the probabilistic information for its predic-
tion (Rasmussen and Williams, 2006). The variance of the predic-
tion can be interpreted as a confidence level of the model.
Additionally, the number of GPRM hyper-parameters that need to
be optimized is small compared to parametric approaches, such
as NN. It has been increasingly considered as an alternative
approach to NN (Neal, 1996) and it has been increasingly applied
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