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h i g h l i g h t s

� Considers the problem of computing reachable sets for CSTRs under uncertainty.
� Proposes a linear transformation to project CSTR dynamics onto subspaces.
� The transformation is based on oblique projections onto subspaces.
� The transformation is invertible and leads to a sparse system representation.
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a b s t r a c t

Computing reachable sets for continuous-stirred tank reactors (CSTRs) under uncertainty is crucial for
designing efficient model-based control strategies or developing robust process monitoring protocols.
This paper, the first in the three-part series, develops a linear transformation to project the dynamics
of a CSTR reaction system onto a transformed state space. The proposed transformation is invertible,
and leads to a ‘‘sparse” system representation in the transformed state space – a property crucial for
the methods developed to compute reachable sets of CSTR reaction systems. The second and third papers
in this series discuss how the transformation developed here can be used to compute effectively outer
interval approximations to the reachable sets of CSTR reaction systems. To this effect, two new bounding
methods – direct and indirect-bounding methods – are proposed in the second and third paper,
respectively, to compute tight interval enclosures for the reachable sets of CSTR reaction systems.
Several numerical examples are also provided to demonstrate efficacy of the proposed direct and
indirect-bounding methods.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The dynamics of chemical reaction kinetics in a continuous stir-
red tank reactor (CSTR) of constant volume V can be modeled using
a set of ordinary differential equations (ODEs) given by

_xðt;uÞ ¼ SrðkðtÞ;xðt;uÞÞ þ 1
V
WuiðtÞ � 1

V
uoðtÞxðt;uÞ;

where x is the concentrations of the species in the CSTR, S and W
are the stoichiometric and concentration matrices, r is the rate vec-
tor, k is the model parameter vector (e.g., kinetic rate-constants,
temperature, pressure), and ui, and uo are the input and output flow
rates, respectively. A detailed description of CSTR systems is given

in Section 2. In this three-part paper, we are interested in
computing time-varying, component-wise bounds on the species
concentrations x, subject to system uncertainties and flow rate dis-
turbances. The uncertain variables and unknown parameters are
denoted by u for convenience. In the literature, this is commonly
referred to as a reachable set computation problem. Given quantifi-
able bounds on uncertain system parameters/variables (e.g., lower
and upper bounds), a reachable set for a CSTR system provides a rig-
orous estimate of how various uncertainties propagate through the
system, and affect concentration profiles of individual species in
time.

In this three-part paper, two bounding methods – direct and
indirect-bounding methods – are proposed to compute interval
enclosures for reachable sets of CSTR reaction systems. The pro-
posed direct and indirect-bounding methods both use an invertible
(or isomorphic) transformation to map the dynamics of CSTR
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reaction systems from the original state space into a transformed
state space. Apart from the transformation being isomorphic, other
prerequisites include the developed transformation leading to a
relatively ‘‘simpler” and ‘‘sparser” system representation in trans-
formed state space compared to the original state space. This
paper, the first in the three-part paper, develops an isomorphic
transformation to map sparsely a CSTR reaction system into the
transformed state space. The proposed transformation is then used
in the development of direct and indirect-bounding methods. The
details of bounding methods and how they use the transformation
are discussed in the second and third papers in this series (Tulsyan
and Barton, 2017a,b).

The central idea used in this paper to obtain a sparse CSTR reac-
tion system representation is based on decomposition of molar
concentrations of species in a CSTR into multiple subspaces. This
is done by constructing a transformation that decomposes the orig-
inal state space into three specific complementary subspaces. The
CSTR reaction system in the transformed state space is then repre-
sented by taking oblique projections of molar concentrations onto
subspaces. Further, of the three subspaces constructed, only one
pair is orthogonal, with the rest being non-orthogonal. Physically,
the three subspaces describe the space of reaction variants, flow
rate variants, and reaction and flow rate invariants for the CSTR
reaction system. Finally, the linear structure of the proposed trans-
formation allows for fast computation of dynamics in the trans-
formed state space – which is essential in extending the use of
proposed direct and indirect-bounding methods for real-time
applications, such as monitoring (Tulsyan and Barton, 2016a) and
optimization (Tulsyan and Barton, 2016b), where bounds need to
be computed fairly quickly.

It is important to compare the transformation proposed in this
paper with existing work. Note that representation of reaction
systems in terms of variants and invariants has been extensively
studied by several authors for the purpose of computing extent-
of-reactions for different reactor configurations (Asbjørnsen and
Field, 1970; Srinivasan et al., 1998; Bhatt et al., 2010). For example,
a two-way decomposition of CSTR reaction systems into reaction
variant and reaction invariant spaces was first derived by
Asbjørnsen and Field (1970), Asbjørnsen (1972), Fjeld et al.
(1974) for modeling and control of CSTR reaction systems. Simi-
larly, a three-way decomposition into the spaces of reaction vari-
ants, flow rate variants, and reaction and flow rate invariants
was first proposed by Srinivasan et al. (1998). Further, decomposi-
tion of CSTR reaction systems into variants and invariants is non-
unique as different transformations and assumptions can lead to
the same decomposition. For example, in Srinivasan et al. (1998),
the authors developed a nonlinear transformation for CSTR sys-
tems to separate the effects of reactions and flow rates; and later,
the same authors in Amrhein et al. (2010) redefined the transfor-
mation to make it linear. Recently, Rodrigues et al. (2015) also
derived the results in Amrhein et al. (2010) using a different linear
transformation under different assumptions. Transformations for
batch systems have also been proposed (Scott and Barton, 2010).

Note that although the approach to compute a three-way
decomposition of CSTR reaction systems proposed here yields
results similar to Amrhein et al. (2010), the transformation,
assumptions and motivation used herein are different. For exam-
ple, the transformation in Amrhein et al. (2010) considers the fol-
lowing: (1) the column spaces spanned by S and W are
independent with ½SW� being a full-column rank matrix; (2)
decomposition into orthogonal complementary subspaces; and
(3) orthogonal projections onto subspaces. The transformation in
Amrhein et al. (2010) further requires the reaction network to have
non-zero initial concentrations to ensure that ½SWx0�, where x0 is
the initial concentrations of species in a CSTR, is a full-column rank
matrix.

On the contrary, the transformation proposed in this paper
requires a weaker assumption of S and W individually being full-
column rank matrices. For CSTR reaction systems for which this
assumption does not hold (e.g., reversible reaction networks, see
Example 1), we provide results to ensure that the proposed trans-
formation is still applicable to such systems. Moreover, the trans-
formation developed in this paper is systematic and offers
greater flexibility as it considers decomposition of the original
state space into non-orthogonal complementary subspaces with
oblique projections of molar concentrations of species.

It is instructive to highlight that while the transformation in
Amrhein et al. (2010), Rodrigues et al. (2015) is well-suited for
computing extent-of-reactions for CSTR reaction systems, the
transformation in this paper is tailored for computing efficient
interval enclosures for CSTR reaction systems. Note that it is possi-
ble to adapt the transformation in Amrhein et al. (2010), Rodrigues
et al. (2015) to compute enclosures, the same way the proposed
tranformation can be used to compute the extent-of-reactions.
Nevertheless, since the focus of this paper is different from
Amrhein et al. (2010), Rodrigues et al. (2015), the transformation
developed here is therefore useful for computing tight interval
enclosures for CSTR reaction systems and not extent-of-reactions.
With this background information, the notation used in this paper
is discussed next.

Notation. Lower-case and upper-case bold letters denote vec-
tors and matrices, respectively. vT (or MT) denotes the transpose
of a vector (or matrix). 0m�n and 1m�n will denote m� n matrices
of zeros and ones, respectively, and In an n� n identity matrix.
For A 2 R

m�n, the rank of the matrix is denoted by RankðAÞ, column
space as CðAÞ ¼ fy 2 R

m : y ¼ Ax for some x 2 R
ng and null space

as NðAÞ ¼ fx 2 R
n : Ax ¼ 0m�1g. The dimension of CðAÞ is denoted

by dimðCðAÞÞ. For a finite, real matrix A 2 R
m�n, let Aþ 2 R

n�m

denote its Moore-Penrose inverse satisfying: (i) AAþA ¼ A; (ii)

AþAAþ ¼ Aþ; (iii) ðAAþÞT ¼ AAþ; and (iv) ðAþAÞT ¼ AþA. Matrix
B 2 R

n�m is a f1;2g-inverse of A if it satisfies conditions (i) and
(ii) Ben-Israel and Greville (2003). Rþ denotes the set of non-
negative reals. For n 2 N and measurable set T � R, the space of
Lebesgue integrable functions v : T ! R

n is denoted by
L1ðT;RnÞ � fðv : T ! R

nÞ : RT jv ij < þ1;8ig, such that v 2 L1ðT;RnÞ
implies v i 2 L1ðT;RÞ for all i.

2. CSTR reaction model

Consider a schematic of the CSTR reaction system in Fig. 1. Let
nx 2 N denote the number of species, nr 2 N the number of chem-
ical reactions, nk 2 N the number of uncertain rate-constants and
np 2 N the number of input flow rates in a chemical kinetic system.
For mathematical convenience, the CSTR is assumed to have one
outlet; however, this need not be the case, in general. For given
compact sets Dk � R

nk ;Dui � R
np and Duo � R, let kðtÞ 2 Dk be the

time-varying uncertain parameters (also includes time-invariant
parameters), uiðtÞ 2 Dui be the input flow rates and uoðtÞ 2 Duo

denote the output flow rates. Defining uðtÞ � ðkðtÞ;uiðtÞ;
uoðtÞÞ 2 U � Dk � Dui � Duo , let the set of time-varying inputs/
parameters be denoted in a compact notation as

U ¼ u 2 L1ðT;Rnkþnpþ1Þ : uðtÞ 2 U; a:e:t 2 T
n o

;

where T ¼ ½t0; tf � � R is some time interval of interest. For a given
set Dx � R

nx , let the set of possible initial concentrations of species
in the CSTR at t0 be X0 � Dx. Let S 2 R

nx�nr andW 2 R
nx�np be the sto-

ichiometric and volumetric concentration matrices, respectively.
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