Chemical Engineering Science 166 (2017) 246-261

Contents lists available at ScienceDirect

Chemical Engineering Science

journal homepage: www.elsevier.com/locate/ces

Rotary reverse flow reactor vs. adiabatic reactor with regenerative preheating - Design and comparison

CHEMICAL

ENGINEERING SCIENCE

Carlos D. Luzi*, Osvaldo M. Martínez, Guillermo F. Barreto

PROIRQ, Departamento de Ingeniería Química, Facultad de Ingeniería, UNLP, La Plata, Argentina Centro de Investigación y Desarrollo en Ciencias Aplicadas "Dr. J. J. Ronco" (CINDECA) CCT La Plata, CONICET, UNLP, calle 47 No. 257, CP B1900AJK La Plata, Argentina

HIGHLIGHTS

- Two autothermal schemes for the treatment of VOCs are simulated and compared.
- Five different monolithic structures are considered for performance comparison.
- A design strategy is proposed considering a range of VOC content to be treated.
- The rotary reverse-flow reactor results more compact than the regenerator-reactor.
- The rotary reverse-flow reactor allows a more flexible operation.

ARTICLE INFO

Article history: Received 7 October 2016 Received in revised form 25 February 2017 Accepted 18 March 2017 Available online 21 March 2017

Keywords: Volatile organic compounds Catalytic combustion Regenerative heat exchange Rotary reverse-flow reactor

ABSTRACT

The autothermal catalytic-combustion systems are commonly used for the purification of waste air streams contaminated with low concentrations of volatile organic compounds (VOC). Within this type of devices, the reverse flow reactors (RFR) are known to be more efficient than systems employing recuperative (surface) heat exchangers to preheat the waste air stream with the lean air effluent from the catalytic incinerator. The advantage of the RFR is basically due to the regenerative heat-exchange mechanism, provided by the inert and catalytic solids inside the unit.

As an alternative, the regenerative mechanism of preheating can be achieved by an independent heat exchanger, which coupled to a catalytic reactor could be expected to produce similar performance as the RFR.

In this context, this contribution is devoted to analyse comparatively the performances of a rotary reverse flow reactor (RFR) and a system comprising a rotary regenerative heat-exchanger and a catalytic reactor (RHE-SR system) for the treatment of a waste air stream contaminated with ethanol and ethyl acetate, by means of mathematical simulation. Both alternatives are assumed to be composed of monoliths with square channels. A strategy of design for both systems suitable for their comparison is proposed, attending to a range of VOC concentration in the waste stream. Both alternatives can be regarded as being suitable options to carry out the target. However, the resulting designs show clear than the RHE-SR does and, besides, it allows to be operated under a wider range of the rotational speed, which is the main control variable once the systems are operating.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In the last decades, the environmental regulations have become more stringent in many countries. As a result, research and development of technologies for the control of air contamination has

E-mail address: carlos.luzi@ing.unlp.edu.ar (C.D. Luzi).

grown considerably. Volatile organic compounds (VOCs) are the most common air contaminants and catalytic oxidation is the most widespread option among destructive alternatives, when the levels of VOCs are low – i.e., $\leq 1\%$ – (Kolaczkowski, 2005).

Depending on the nature of each VOC and the catalyst used, common temperatures for the catalytic combustion ranges between 200 and 400 °C. Additionally, the waste air streams are usually at near ambient temperature and the flow rates are quite high. Therefore, the need to efficiently recover part of the

^{*} Corresponding author at: PROIRQ, Departamento de Ingeniería Química, Facultad de Ingeniería, UNLP, La Plata, Argentina.

Nomenclature

а	catalytic activity
a.	catalytic activity of the fresh catalyst
u	witight activity of the mean anti-
<i>a_{crit}</i>	critical value of a for reactor extinction
a_v	specific interfacial area (m ² /m ³)
Cp	specific heat (J kg ⁻¹ K ⁻¹)
Ć.	molar concentration of the <i>i</i> th component in the gas
Cj	$m_{\rm sec} = (m_{\rm o} 1/m^3)$
C	total malar concentration in the sec shace (mol/m ³)
C_T	total molar concentration in the gas phase (mol/m ²)
D	diameter of the RRFR (m)
D_{RHE}	diameter of the regenerator (m)
D_{R}	diameter of the reactor (m)
- K d.	hydraulic diameter of the channels $(m) (As, /a)$
u_h	invariance diameter of the channels (iii) $(46L/u_v)$
E_i	activation energy of the ith reaction (J mol * K *)
1 _c	cleaning fraction
f_{cold}	fraction of the total cross-section of the regenerator
	used for the cooling step of the solid (m)
f.	ratio of the length of the inert zone to the total length of
JI	the unit
~	
G	superficial mass velocity (kg m ⁻² s ⁻¹)
G_{mC}	cleaning mass flow rate (kg s^{-1})
G_{mT}	total mass flow rate to be treated (kg s^{-1})
 h	heat transfer coefficient (W $m^{-2} K^{-1}$)
11 1-*	modified host transfer coefficient (Γ_{π} (0)) ($M_{\pi} = 2 K^{-1}$)
n	modified field transfer coefficient (Eq. (9)) (vv m - K -)
k _i	specific rate constant of the <i>i</i> th reaction (s ⁻¹)
k _{i ref}	specific rate constant of the <i>i</i> th reaction, evaluated at
1,10	$T_{\rm ref}(s^{-1})$
V	adsorption constant of the <i>i</i> th component $(m^3 mol^{-1})$
Kj	
$\kappa_{m,j}$	mass transfer coefficient for the jth component (m s ⁻¹)
l	equivalent washcoat thickness (m)
	$\left(\delta_{cat} \left[1 + \delta_{cat} / (L_{cell} - \delta_T) \right] \right)$
I	length of the RRFR (m)
I	side of the unit call of the monolith $(m) (N^{-1/2})$
L _{cell}	side of the unit cell of the mononth (m) (N _{cell})
L _{RHE}	length of the regenerator (m)
L_R	length of the reactor (m)
M_{air}	molecular weight of air
n	current half-cycle to be simulated
N	number of cells per unit of cross-sectional area (m^{-2})
IN cell	Number of cells per unit of closs-sectional area (III)
NU	Nusselt number
r_i	<i>i</i> th reaction rate (mol $m^{-3} s^{-1}$)
r;	effective rate of consumption of the <i>j</i> th component
J	$(mol m^{-3} s^{-1})$
R	ideal gas constant $(I \mod^{-1} K^{-1})$
л 	Development of the second
ке	Reynolds number (evaluated at feed conditions)
S	total cross-section of RRFR (m ²)
S _{RHE}	total cross-section of the regenerator (m ²)
Sp	total cross-section of the catalytic reactor (m^2)
Sh	Sherwood number
(T) RS	Sherwood humber
$\langle I_G \rangle$	average temperature of the air stream at the output of
	the reaction step (K)
$\langle T_G \rangle^{cool}$	average temperature of the air stream at the output of
(_/	the cooling step (K)
$T \rightarrow C$	
	average temperature of the air stream at the output of
$\langle I G \rangle$	average temperature of the air stream at the output of the alexies $rate (K)$
(IG)	average temperature of the air stream at the output of the cleaning step (K)
t	average temperature of the air stream at the output of the cleaning step (K) time (s)
$\langle I_G \rangle$ t t _{a0}	average temperature of the air stream at the output of the cleaning step (K) time (s) time at which a channel in the position α_0 at initial time
$\langle I_G \rangle$ t t _{\alpha0}	average temperature of the air stream at the output of the cleaning step (K) time (s) time at which a channel in the position α_0 at initial time (in the reaction step) reaches the cleaning step for the
$\langle T_G \rangle$ t t _{\alpha0}	average temperature of the air stream at the output of the cleaning step (K) time (s) time at which a channel in the position α_0 at initial time (in the reaction step), reaches the cleaning step for the forther time ($ (\sigma_1 - \alpha) = \alpha_1 t_1 - \alpha_2 $)
$\langle I_G \rangle$ t t _{\alpha0}	average temperature of the air stream at the output of the cleaning step (K) time (s) time at which a channel in the position α_0 at initial time (in the reaction step), reaches the cleaning step for the first time ([$(\pi - \varphi) - \alpha_0]t_{cycle}/(2\pi)$)
$\langle I_G \rangle$ t t _{\alpha0}	average temperature of the air stream at the output of the cleaning step (K) time (s) time at which a channel in the position α_0 at initial time (in the reaction step), reaches the cleaning step for the first time ([$(\pi - \varphi) - \alpha_0$] $t_{cycle}/(2\pi)$) cycle period (s)
(I_G) t $t_{\alpha 0}$ t_{cycle}	average temperature of the air stream at the output of the cleaning step (K) time (s) time (s) time at which a channel in the position α_0 at initial time (in the reaction step), reaches the cleaning step for the first time ([$(\pi - \varphi) - \alpha_0]t_{cycle}/(2\pi)$) cycle period (s) minimum cycle period (s)
$\langle I G \rangle$ t $t_{\alpha 0}$ t_{cycle} t_{cycle} t_{cycle} crit	average temperature of the air stream at the output of the cleaning step (K) time (s) time at which a channel in the position α_0 at initial time (in the reaction step), reaches the cleaning step for the first time ([$(\pi - \varphi) - \alpha_0$] $t_{cycle}/(2\pi)$) cycle period (s) minimum cycle period (s) critical cycle period (s)
$\langle I G \rangle$ t $t_{\alpha 0}$ t_{cycle} t_{cycle} $t_{cycle,crit}$ $t_{cycle,crit}$	average temperature of the air stream at the output of the cleaning step (K) time (s) time (s) time at which a channel in the position α_0 at initial time (in the reaction step), reaches the cleaning step for the first time ([$(\pi - \varphi) - \alpha_0$] $t_{cycle}/(2\pi)$) cycle period (s) minimum cycle period (s) critical cycle period (s) minimum operating cycle time for the nominal opera-
$\langle I G \rangle$ t $t_{\alpha 0}$ t_{cycle} t_{cycle} $t_{cycle,crit}$ $t_{cycle,low}$	average temperature of the air stream at the output of the cleaning step (K) time (s) time (s) time at which a channel in the position α_0 at initial time (in the reaction step), reaches the cleaning step for the first time ($[(\pi - \varphi) - \alpha_0]t_{cycle}/(2\pi)$) cycle period (s) minimum cycle period (s) critical cycle period (s) minimum operating cycle time for the nominal operation (s)
$\langle I G \rangle$ t $t_{\alpha 0}$ t_{cycle} $t_{cycle,crit}$ $t_{cycle,low}$	average temperature of the air stream at the output of the cleaning step (K) time (s) time (s) time at which a channel in the position α_0 at initial time (in the reaction step), reaches the cleaning step for the first time ([$(\pi - \varphi) - \alpha_0$] $t_{cycle}/(2\pi)$) cycle period (s) minimum cycle period (s) critical cycle period (s) minimum operating cycle time for the nominal operation (s) duration of a cleaning step (c)
$ t t_{\alpha 0} t_{cycle} t_{cycle} t_{cycle,crit} t_{cycle,low} t_{CS} $	average temperature of the air stream at the output of the cleaning step (K) time (s) time at which a channel in the position α_0 at initial time (in the reaction step), reaches the cleaning step for the first time ([$(\pi - \phi) - \alpha_0]t_{cycle}/(2\pi)$) cycle period (s) minimum cycle period (s) critical cycle period (s) minimum operating cycle time for the nominal opera- tion (s) duration of a cleaning step (s)

t _{reg}	duration of a heat regeneration step of the solid (RHE-SR) (s)
t _{RS}	duration of a reaction step (RRFR) (s)
Т	temperature (K)
$T_G^{0,R}$	temperature of the air stream at the reactor inlet (K)
$T_{C}^{L_{R},R}$	temperature of the air stream at the reactor outlet (K)
T_{ref}^{G}	reference temperature for the calculation of the kinetic coefficients (K)
T _{S.max}	maximum temperature reached in the solid phase (K)
$T_{S,\max}^{adm}$	maximum allowable temperature in the solid phase used in the design (K)
V	total volume of the RRFR (m ³)
VRHE	total volume of the regenerator (m ³)
VR	total volume of the reactor (m^3)
Wact	total mass of the active material (kg)
W	total mass of the inert material (kg)
$X^{(n)}$	any of the variables T_s , T_G or $y_{i,G}$ for the <i>n</i> th half-cycle
$X_{ini}^{(n)}$	any of the variables T_S , T_G or $y_{j,G}$ at the beginning of the <i>n</i> th half-cycle
$X_{end}^{(n)}$	any of the variables T_S , T_G or $y_{j,G}$ at the end of the <i>n</i> th balf-cycle
$\left< y_{j,G} \right>^{RS}$	average mole fraction of the <i>j</i> th component in the gas phase at the output of the reaction step
$\langle y_{j,G} \rangle^{cool}$	average mole fraction of the <i>j</i> th component in the gas
$\langle y_{j,G} \rangle^C$	average mole fraction of the <i>j</i> th component in the gas
	phase at the output of the cleaning step
$\langle y_{VOCs} \rangle$	average mole fraction of VOCs at the output
$y_{iC}^{0,\min}$	minimum VOC concentration
$y_{j,G}^{0,nom}$	nominal VOC concentration
$y_{j,G}^{L_R,R}$	mole fraction of the <i>j</i> th component in the air stream at the output of the reactor
∕vadm ∖	allowable mole fraction of VOCs at the output
V VOCs/	mole fraction of the <i>i</i> th component
7 7	axial position in the channel (m)
~	
Greek letters	
α_0	angular location of the channels at the operation start time
δ _{cat}	catalytic coating thickness (m)
δ_T	wall thickness (m)
ΔH_i	enthalpy of combustion of the <i>j</i> th component ($ mol^{-1}$)

- enthalpy of combustion of the *j*th component $(J mol^{-1})$
- pressure drop in a cycle (mbar) $|\Delta P|$
- $\left|\Delta P\right|^{adm}$
 - allowable pressure drop (absolute value) (mbar)
- Δt_{oper} difference between $t_{cycle,crit}$ and $t_{cycle,low}$ (s)
- ΔT_{ad} maximum adiabatic temperature rise (K)
- ΔT^R temperature rise in the reactor (K)
- void fraction of the bed 3
- tolerance for the maximum temperature (1 K) ϵ_T
- tolerance for the determination of the relative critical εa catalyst activity $(5 \cdot 10^{-4})$
- thermal conductivity of the solid on the axial direction λs $(W m^{-1} K^{-1})$
- density (kg m^{-3}) ρ
- time at which the channel just reaches the cleaning step τ angle span by the compartments discharging or collect-
- φ ing the cleaning stream

Subscripts

- cat catalyst-associated property
- С cleaning step

247

Download English Version:

https://daneshyari.com/en/article/6467635

Download Persian Version:

https://daneshyari.com/article/6467635

Daneshyari.com