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A B S T R A C T

A general modeling framework for mixture design problems, which integrates Generalized Disjunctive
Programming (GDP) into the Computer-Aided Mixture/blend Design (CAMbD) framework, was recently
proposed (S. Jonuzaj, P.T. Akula, P.-M. Kleniati, C.S. Adjiman, 2016. The formulation of optimal mixtures with
Generalized Disjunctive Programming: A solvent design case study. AIChE Journal 62, 1616–1633). In this
paper we derive Hull Relaxations (HRs) of GDP mixture design problems as an alternative to the big-M (BM)
approach presented in this earlier work. We show that in restricted mixture design problems, where the number
of components is fixed and their identities and compositions are optimised, BM and HR formulations are
identical. For general mixture design problems, where the optimal number of mixture components is also
determined, a generic approach is employed to enable the derivation and solution of the HR formulation for
problems involving functions that are not defined at zero (e.g., logarithms). The design methodology is applied
successfully to two solvent design case studies: the maximization of the solubility of a drug and the separation of
acetic acid from water in a liquid–liquid extraction process. Promising solvent mixtures are identified in both
case studies. The HR and BM approaches are found to be effective for the formulation and solution of mixture
design problems, especially via the general design problem.

1. Introduction

The design of mixtures is an important and challenging problem
with numerous industrial applications. Of particular interest are
applications in separation processes, such as liquid–liquid extraction
(Brignole and Gani, 1983; Karunanithi et al., 2005; Cignitti et al.,
2015) and crystallization (Karunanithi et al., 2006, 2009), that require
suitable solvents or solvent mixtures to meet given specifications, and
where the choice of solvent can have a significant impact on the
performance of the process. In drug manufacturing, for example,
unsuitable solvents can result in undesired crystal morphology, which
may affect downstream processing and product performance (Gordon
and Amin, 1984; Karunanithi et al., 2006). Solvent mixtures are also
used in chemical reactors to enhance the reaction rate (Folić et al.,
2007; Struebing et al., 2013) or (Zhou et al., 2015) and in product
design as constituents of the final product formulations (Gani, 2004a,
b; Gani and Ng, 2015).

Several systematic methodologies have been developed within the
Computer-Aided Mixture/blend Design (CAMbD) framework (Gani,
2004a; Achenie et al., 2003) for the design of solvent mixtures
(Brignole and Gani, 1983; Buxton et al., 1999; Sinha et al., 2003;

Karunanithi et al., 2005; Cignitti et al., 2015; Jonuzaj et al., 2016),
blends of refrigerants (Duvedi and Achenie, 1997; Churi and Achenie,
1997; Vaidyaraman and Maranas, 2002), blends of polymers
(Vaidyanathan and El-Halwagi, 1996; Solvason et al., 2009; Zhang
et al., 2015), blended liquid products (Yunus et al., 2014) and heat
transfer fluid mixtures (Papadopoulos et al., 2013). A more detailed
description of the existing methodologies for mixture design can be
found in Jonuzaj et al. (2016). In spite of these advances, there remains
great potential to improve existing approaches to mixture design within
the CAMbD framework. In current practice, the number of compounds
or materials required for the design of mixtures or products is often
chosen first, before other design decisions are made, and this can lead
to suboptimal designs. Thus, most methodologies proposed to date
have been focused on the design of mixtures with a pre-specified
number of components and have been applied mostly to the design of
binary mixtures (Sinha et al., 2003; Karunanithi et al., 2005, 2006;
Buxton et al., 1999; Papadopoulos et al., 2013; Vaidyanathan and El-
Halwagi, 1996), with some exceptions such as the work of Solvason
et al. (2009), Yunus et al. (2014) and Jonuzaj et al. (2016), who have
presented methodologies for the design of multicomponent mixtures.
CAMbD methods generally rely on Mixed Integer Nonlinear
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Programming (MINLP) techniques to model the discrete decisions
inherent in mixture design problems, which are related to the number
of components in the mixture and their identities. The solution of the
resulting mixed integer optimization problems can be very challenging
due to nonconvexities in the space of the continuous variables and a
large combinatorial solution space which may lead to several numerical
difficulties.

By extending the applicability of CAMbD methods to generalized
mixture design problems, in which the number of components in the
optimal mixture is not fixed a priori, the explicit evaluation of every
choice of the number of components can be avoided, making it possible
to consider larger design spaces, especially as the number of desirable
components increases. This requires developing a comprehensive and
systematic mathematical programming approach for the formulation
and solution of such problems. In the context of a generalized CAMbD
problem, we have recently proposed (Jonuzaj et al., 2016) a novel
methodology for determining simultaneously the optimal number of
compounds in a mixture, the specific identities of the compounds, and
their composition in the mixture. The desired compounds are chosen
from a list of possible molecules. Within this approach, logic-based
modeling was employed to formulate the CAMbD problem as a
Generalized Disjunctive Program (GDP) (Raman and Grossmann,
1994), in order to address the difficulties arising from the complexity
of the model and facilitate problem formulation. From this initial work,
the objective of our current work is to study different strategies for the
solution of the GDP problem, including the Big-M (BM) (Nemhauser
and Wolsey, 1999; Raman and Grossmann, 1994) approach and Hull
Reformulations (HRs) (Lee and Grossmann, 2000, 2003), in order to
circumvent the combinatorial explosion that accompanies large design
spaces and facilitate problem solution. The design methodology and the
two different relaxation approaches are applied to two case studies of
increasing complexity. In the first, simple, example, which involves
solid–liquid equilibrium calculations, an optimal solvent mixture that
maximizes the solubility of a drug is designed. The second case study
consists of a more challenging problem, where the most effective
solvent mixture to separate acetic acid from water by liquid–liquid
extraction is designed. In both cases, the computational performance of
the different reformulation strategies is assessed. As will be seen, the
resulting problems are challenging to solve for existing optimization
algorithms. Here we focus on the development of a generic formula-
tion, with application to small-scale examples. In practice, the applica-
tion of the proposed approach to formulation design implies consider-
ing a large number of ingredients (e.g., there can be 10–30 ingredients
in a typical paint (Nicks and Ryan, 1975) or shampoo (Trüeb, 2007),
chosen from a much larger list).

The paper is organized as follows. In Section 2, a brief overview of
the GDP concepts necessary for the presentation of the problem
formulations and solution strategies is provided. In Section 3, several
mathematical formulations of the generalized mixture design problem
are presented. Then, in Sections 4 and 5, the proposed approaches are
applied to the two case studies.

2. A brief introduction to Generalized Disjunctive
Programming (GDP)

In this section we describe briefly the general formulation of GDP
problems, which was introduced by Raman and Grossmann (1994),
and we review briefly how the GDP problem, with its Boolean variables,
can be converted into mixed-integer form so that it can be solved by
standard MINLP algorithms (e.g., the outer-approximation algorithm
Duran and Grossmann, 1986; Fletcher and Leyffer, 1994). GDP is a
logic-based approach for formulating discrete/continuous optimization
problems that extends the disjunctive programming proposed by Balas
(1985) and involves Boolean and continuous variables that are related
via disjunctions, algebraic equations and logic propositions (Beaumont,
1991; Turkay and Grossmann, 1996). It has been employed by

Grossmann and co-authors in several applications in the area of
process systems engineering, such as the design of process network
systems (Raman and Grossmann, 1994; Vecchietti et al., 2003; Ruiz
and Grossmann, 2013; Trespalacios and Grossmann, 2015), the design
of distillation columns (Grossmann and Trespalacios, 2013), strip-
packing (Sawaya and Grossmann, 2005) and scheduling problems
(Raman and Grossmann, 1994; Sawaya and Grossmann, 2005;
Méndez et al., 2006; Castro and Grossmann, 2012).

The general formulation of a GDP problem involves an objective
function to be optimised, general constraints that must hold regardless
of the discrete choices, conditional constraints within disjunctions that
depend on the discrete decisions, represented by Boolean variables,
and logic propositions that connect the disjunctive variables. The
general formulation of a GDP problem is presented as (GDP) in
Appendix A for completeness. In order to exploit existing MINLP
algorithms, once an appropriate GDP formulation has been obtained, it
can be converted into an MINLP problem using different approaches,
such as big-M or Hull Reformulation, that result in relaxations of
varying strength (Lee and Grossmann, 2003; Grossmann and
Trespalacios, 2013). The BM formulation (Nemhauser and Wolsey,
1999) is the simplest representation of a GDP problem in a mixed-
integer form (Raman and Grossmann, 1994). The concept of a Convex
Hull relaxation of a convex GDP problem was introduced by Stubbs
and Mehrotra (1999) and was later extended by Lee and Grossmann
(2000), Lee and Grossmann (2003), Lee and Grossmann (2005) for the
derivation of Hull Relaxations for convex and nonconvex conditional
constraints. Generic formulations of the big-M and Hull Relaxation
approaches are presented in Appendix A as models (BM) and (HR),
respectively. In the (HR) model, disjunctive constraints are trans-
formed into mixed-integer equations via the perspective function,
y h ν y( / ) ≤ 0j k j k j k j k, , , , (Grossmann and Trespalacios, 2013). In order to
avoid the numerical difficulties (division by zero) that can arise from
perspective functions, the following approximation was proposed by
Sawaya (2006):
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where yj k, is a binary variable that has one-to-one correspondence with
the Boolean variable, Yj k, , of model (GDP); hj k, is a nonlinear condi-
tional constraint that depends on the discrete decisions; νj k, is a
disaggregated variable and ϵ is a small tolerance which usually varies
from 10−8 to 10−2.

Both (BM) and (HR) have a one-to-one correspondence with model
(GDP) (Lee and Grossmann, 2000), so that all three formulations have
the same global and local solutions. The BM approach is known to give
weak lower bounds in the case of a minimization problem (Grossmann,
2002; Lee and Grossmann, 2003; Vecchietti et al., 2003). This is due in
part to the fact that it relies on the Big-M parameter, Mj k, , a bound
whose value cannot always be calculated exactly but is often specified
based on an approximate analysis of function ranges. As a result, it is
usually given large values, so that feasible points are not excluded from
the solution space. The HR formulation, on the other hand, incurs a
computational cost due to the introduction of a new set of disaggre-
gated variables, νj k, , and new constraints, thereby increasing the size of
the problem (Lee and Grossmann, 2000). For problems that are convex
in the continuous variables, it can be proved (Lee and Grossmann,
2003) that when the discrete domain of the Hull Reformulation is
relaxed (i.e. y0 ≤ ≤ 1j k, ), it gives bounds that are as tight as or tighter
than the bounds generated with the Big-M approach.

Although HR techniques may provide tighter lower bounds than the
traditional BMmodel, they do not always lead to more efficient solution
times due to the increased number of variables and constraints (Lee
and Grossmann, 2005; Lee and Leyffer, 2012; Grossmann and
Trespalacios, 2013). In cases where tight variable bounds are provided,
or in large problems where it is desirable not to increase the number of
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