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A B S T R A C T

Drop-breakup models for liquid/liquid dispersion in turbulent flow mostly derive from Kolmogorov and Hinze
analysis. They are of a semi-empirical type, since they are based on power laws involving at least Weber and
Reynolds numbers. The pre-factors are determined by fitting the experimental data on droplet diameters in the
various configurations. The main cause for the discrepancies in the fitting constant between different flow types
is the intrinsic spatial heterogeneity of the turbulent field, especially the turbulent kinetic energy (TKE)
dissipation rate ε. This feature explains why there is no universal physical model suitable for breakup prediction
throughout the range of flow geometries.

In the present work, we investigate the drop size distribution by reference to Hinze's actual theory in a local
approach, attempting a direct interpretation thanks to the turbulence spectra measured (by LDA) in the most
dissipative locations of a flow which is basically inhomogeneous. This method allows estimation of droplet size
with no constant fitting and with acceptable accuracy; however the knowledge of the turbulence field is required.
The present study is carried out with low dispersed-phase fraction, so that the coalescence is negligible.
Experiments show that the “typical value” for the TKE dissipation rate to fit the raw model of Hinze and
Kolmogorov lies between the maximum and the mean value in the flow field. The issue of “typical ε value” hence
avoided is discussed by physical arguments for the flow structure.

1. Liquid/liquid dispersion theories

The study of liquid/liquid or gas/liquid dispersion is of great
interest in a wide range of industries, among them chemical engineer-
ing applications involving interfacial reactions and fluid mixing in the
food, cosmetics, pharmaceutics, and paper industries. In all these
systems, process efficiency is governed by droplet size, and this has
motivated extensive research on bubble or droplet breakup. Taylor
(1932, 1934) established the theory of droplet deformation in the
laminar regime that is briefly described below, although our study deals
with the turbulent regime. He based his analysis on a simple force
balance stating that the breakup is governed by a dimensionless group
Ca (the capillary number) that represents the ratio of the deforming
external viscous stress of the laminar flow and the resisting Laplace
forces (half of them):

Ca τ d
σ

=
2 (1)

where σ is the surface tension, d the droplet diameter and τ the
external viscous stress defined in Eq. (2), where μc is the continuous-
phase viscosity and S the strain-rate tensor:

τ μ S S= 2 :c (2)

The generalized shear rate is defined by

γ S Ṡ = 2 : (3)

Breakup is expected to occur when the value of the dimensionless
group Ca exceeds a critical value Cacrit that depends on the relative
phase viscosity ratio p (the parameter describing the resistive internal
viscous forces):

p
μ
μ

= d

c (4)

where μd is the dispersed phase viscosity. The dependence of drop
deformation on p was investigated experimentally and theoretically by
resolving the Stokes equations around the drop, as thoroughly de-
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scribed by Grace (1982) for shear and extensional flows. In fact, the
critical ratio appears to depend also on the vorticity (extensional
component). The maximum bubble size dmax that can “survive” in the
flow is given by:

Ca
μ γ d

σ
=

̇
2crit

c max
(5)

with the value Cacrit depending on p and its minimum is around 0.5 for
p = 1. Fig. 1 shows the behavior of Cacrit throughout the range of p for
both simple shear flow (Couette flow) and extensional flow (four-roll
hyperbolic flow). An important feature is that the shear flow cannot
achieve breakup for a dispersed-phase viscosity greater than four times
the continuous-phase viscosity, whereas this limit does not exist when
there is a significant extensional component. Breakup also appears to
be more efficient in the latter case as the critical Capillary number is
lower throughout the whole range of p (Bentley and Leal, 1986). The
diagram reproduced on Fig. 1 allows determination of the maximum
drop diameter that can be encountered in the flow, but not the size
distribution resulting from the stochastic breakup process resulting
from the global flow pattern. Nevertheless, we believe, like Ottino et al.
(2000) that “understanding of this diagram constitutes the minimum
knowledge needed to rationalize dispersion process in complex flows”.

This argument can be transposed to the turbulent regime, but the
relevant stress for the breakup phenomenon is here the inertial forces
of the turbulent field. The fundamental theory for bubble or drop
breakup in the literature was suggested independently by Kolmogorov
(1949) and Hinze (1955). The Hinze-Kolmogorov theory is based on
two assumptions: (i) in homogeneous and isotropic turbulence, inertial
forces in the turbulent eddies are more intense than viscous forces and
are responsible for breakup; (ii) only velocity fluctuations at the drop-
diameter scale can cause the large deformations required for the drop
breakup. Of course, these assumptions are applicable when the range of
drop diameters falls in the inertial domain of the turbulence spectrum,
meaning in the turbulent cascade length scales. It can be noticed that
for droplets of diameters below the Kolmogorov length scale, the
breakup is essentially governed by viscous shear, γ ̇ = ( )vis

ε
ν

1/2, and the
Taylor-Grace theory is relevant for predicting the scale of the droplet
size.

Returning to the cascade domain, the stress τ responsible for drop
deformation is based on the Reynolds tensor for eddies of size d :

τ ρ δu d= ( )2 (6)

where ρ is the density of the continuous phase and δu d( )2 is the
longitudinal autocorrelation over a distance d equal to the drop
diameter, which is the second-order structure function S d( )2 in
wavelength space (Monin and Yaglom, 1975):

δu d S d u x d u x( ) = ( ) = ( + ) − ( )2
2

2 2 (7)

Therefore the expression for the drop Weber number, equivalent to
a turbulent capillary number, is given by:

We ρ δu d d
σ

= ( )2

(8)

If d is within the inertial range of the turbulent scales, S d( )2 can be
expressed from the energy cascade theory for equilibrium turbulence
by:

S d δu d β ε d( ) = ( ) =2
2 2/3 2/3 (9)

where ε is the local turbulent kinetic energy dissipation rate (Batchelor,
1953). Eq. (9) is the Kolmogorov two-thirds law and β is called the
Kolmogorov constant in the physical space, a “true” constant for
homogeneous and isotropic turbulence (often denoted by CK or C2 in
the literature). Hence the final expression for the drop Weber number
is:

We ρβε d
σ

=
2/3 5/3

(10)

The force balance implies the existence of a critical value above
which breakup can occur, Wecrit, and then the maximal drop diameter
can be predicted by:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟d We

β
σ
ρ

ε=
crit

max

3/5 3/5
−2/5

(11)

which can be written

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟d We

β ε
σ
ρ

= crit
max 2/3

3/5 3/5

(12)

The proportionality of dmax to σ ρ ε( / )3/5 −2/5 in Eq. (11), referred as
the HK (Hinze-Kolmogorov) model, has been validated in several
studies to fit the maximum drop size, but the values of the pre-factor
We β( / )crit

3/5 and Wecrit are not generally agreed upon and not very
constant: some examples from the literature are given in Table 1.

The value of the critical Weber number is open for discussion:
depending on the drop breakup mode – binary (Xiang et al., 2011;
Irannejad and Jaberi, 2014), ternary (Konno et al., 1983) – there are
probably slightly different critical values. Nevertheless, the various
values of this parameter obtained theoretically or by simulation
(Hesketh et al., 1991) in liquid/liquid dispersions are of order of unity.
In this study Wecrit is then fixed at unity in accordance with the analysis
of Hinze (1955).

The discrepancies observed in the We β( / )crit
3/5 values in Table 1 may

also be explained by the β values, which may depend on the local
turbulent structure and cannot easily be attained experimentally.
Authors generally estimate this value from data in the literature for
similar flows (Martinez-Bazan et al., 1999a). Sometimes it is explicitly
fixed to fit the experimental drop size (Zaccone et al., 2007).

Another significant difficulty arises in the adequate choice of the ε
value in the HK model, which is defined for local properties in an
inhomogeneous turbulence, unlike the dispersion result, which is
observed as a global process. In real industrial cases, sharp gradients
exist for all the turbulent quantities, so that the reference ε value
becomes very arbitrary. The more usual choice is then the mean value,
since that can be easily determined by the energy balance in the
process. Alternative options can be mentioned: for instance, the
maximum ε value “seen” by the fluid particles in the flow can be
considered more suitable to scale the maximum diameter. The latter
idea is relevant if the residence time is sufficient to ensure that the
particles stay “long enough” in the higher-turbulence region in the flow
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Fig. 1. Critical capillary number.
Adapted from Grace (1982).
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