Contents lists available at ScienceDirect

CHEMICAL ENGINEERING SCIENCE

Chemical Engineering Science

journal homepage: www.elsevier.com/locate/ces

Membrane-assisted crystallization: Membrane characterization, modelling and experiments

Fatemeh Anisi, Kiran Mathew Thomas, Herman J.M. Kramer*

Intensified Reaction & Separation Systems, Process & Energy Laboratory, Delft University of Technology, Leeghwaterstraat 39, 2628 CA Delft, The Netherlands

ARTICLE INFO

Keywords: Crystallization Sweeping Gas Membrane Distillation Hollow fiber contactor Transverse flow Heat and mass transfer

ABSTRACT

A hollow fiber membrane module was assessed for its potential in assisting crystallization processes. The membrane module was characterized in the sweeping gas membrane distillation configuration considering various solution and sweeping gas flow rates, temperatures and solution concentrations. A model, coupling mass and heat transfer, was developed to predict the membrane flux. The effect of the process conditions on the membrane flux was experimentally determined and the results were used to validate the model. Feed temperature and air flow rate were found to have a significant effect on the membrane flux. Having found the optimal process conditions for membrane distillation process, batch seeded crystallization experiment were performed to confirm the potential of membrane distillation in the generation of adequate rate and level of supersaturation. Since the desired supersaturation level could be maintained in the crystallizer while seeds were growing, it is confirmed that membrane distillation can be an efficient alternative to conventional supersaturation generation processes. Finally, comparing the modelling results with experiments confirms the acceptable accuracy and predictability capability of the developed model.

1. Introduction

Crystallization is one of the oldest and the most widely applied separation process in the chemical and pharmaceutical industries (Drioli et al., 2012). supersaturation is the driving force for the crystallization. Generation of supersaturation can generally be achieved by either reducing the solubility of solution (eg cooling) or by removing the solvent from the solution by evaporation (Lakerveld et al., 2010; Curcio et al., 2001). However, evaporation in a crystallizer is limited by the area available for evaporation and the entrainment of liquid droplets in the condenser. Furthermore, it is challenging to produce thermally labile compounds by evaporative crystallization, because of the high investment cost involved in evaporating the solvent at a lower temperatures (Kuhn et al., 2009).

A viable alternative to evaporation can be found in the desalination industry. Membranes are being widely used to substitute evaporation for obtaining the solvent (pure water) from the solution (saline water) (Khayet et al., 2003, 2000a, 2000b). Membranes can perform the similar task to concentrate a solution thereby generating supersaturation required for crystallization. Such an innovative combination of membranes and crystallization, Membrane-assisted Crystallization (MaC), has the potential to overcome the previously mentioned limitations of evaporative crystallization. MaC of several compounds

has been investigated (Kuhn et al., 2009; Curcio and Drioli, 2005; Gryta, 2002), and in a theoretical study it has been suggested that MaC can be applied to a large variety of systems (Lakerveld et al., 2010).

Among the various membrane processes, Reverse Osmosis (RO), Osmotic Distillation (OD) and Membrane Distillation (MD) are the most commonly used processes in MaC. The high potential of MaC-RO and MaC-OD to control the generation of supersaturation and to concentrate a solution was found in the precipitation and crystallization processes (Curcio and Drioli, 2005; Azoury et al., 1986). The potential of using MaC-RO process was investigated by optimization of final mean size with minimal energy conversion for adipic acid (Kuhn et al., 2009). MaC-RO was successfully used for NH₄SO₄/water and adipic acid/water systems. It was observed that selectivity and membrane flux depend on the level of solubility and dependency of solubility on temperature (Lakerveld et al., 2010). In case of temperature sensitive compounds OD is most often used to remove water from liquid foods since the driving force for OD is the concentration difference and it can be operated in relatively low temperatures (Gryta, 2005; Warczok et al., 2007).

MD is a promising alternative for compounds with high osmotic pressure. It is a thermally driven process in which the volatile components are transported across a porous hydrophobic membrane due to the difference in the vapor pressures across the membrane

* Corresponding author.

http://dx.doi.org/10.1016/j.ces.2016.10.036

0009-2509/ © 2016 Elsevier Ltd. All rights reserved.

Received 14 June 2016; Received in revised form 21 September 2016; Accepted 18 October 2016 Available online 19 October 2016

List of symbols		T_{f}	[K] Bulk temperature of feed side
		T'_{f}	[K] Membrane interface temperature of the shell side
Symbol Unit Properties		$T_{f,in}$	[K] Inlet temperature of lumen side
		T _{f,out}	[K] outlet temperature of shell side
а	[Dimensionless] Activity coefficient	Ta	[K] Bulk temperature of shell side
Am	[m ²] Membrane total area	T'a	[K] Membrane interface temperature of lumen side
A _{ant}	23.1964 Antoine constant	$T_{a,in}$	[K] Inlet temperature of lumen side
Bant	3816.44 Antoine constant	T _{a,out}	[K] outlet temperature of lumen side
Cant	-46.13 Antoine constant	ua	[m/s] Linear air velocity
C_1	1.2 Activity coefficient constant	u _e	[m/s] Effective feed velocity
C_2	0.003 Activity coefficient constant	х	[m] Location on membrane length
Cp	$[J/kg K^{-1}]$ Specific heat	Xs	[kg solute/kg solvent] Weight fraction of L-ascorbic acid in
d _m	[m] Membrane module diameter		solution
dt	[m] Membrane central tube diameter	x's	[kg solute/kg solvent] Weight fraction of L-ascorbic acid at
di	[m] Tube inner diameter		the interphase
do	[m] Tube outer diameter	ΔH_v	[kJ/kg] Heat of vaporization of water
d	[m] Cell diameter	ΔH^{o}_{v}	[kJ/kg] Heat of vaporization of water at 0 °C
dh	[m] Hydraulic diameter	δ	[m] Membrane thickness
d _{b f}	[m] Hydraulic diameter of shell side	в	[Dimensionless] Membrane porosity
d _b a	[m] Hydraulic diameter of lumen side	€n	[Dimensionless] Membrane packing fraction
Dım	[m ² /s] Knudsen coefficient of diffusion	0£	[kg/m ³] Feed density
D _{mol}	$[m^2/s]$ ordinary molecular diffusion coefficient	λmm	$[W/m K^{-1}]$ Membrane material thermal conductivity
Dmom	$[m^2/s]$ Diffusion coefficient of combination	ω	[Dimensionless Air humidity
h _f	$[W/K m^{-2}]$ Heat transfer coefficient of feed side	ლ ტ_	$[m^3/s]$ Volumetric flow rate of air
h_	$[W/K m^{-2}]$ Heat transfer coefficient of air side	Ψa die	$[m^3/s]$ Volumetric flow rate of feed
h	$[W/K m^{-2}]$ Heat transfer coefficient of membrane	Ψ1 π	[Dimensionless] Pi number
h h	$[W/K m^{-2}]$ Heat transfer coefficient related to MD flux	т	[Dimensionless] Membrane tortuosity
hav	$[W/K m^{-2}]$ Heat transfer coefficient of fluids	Ľ	
h	$[W/K m^{-2}]$ Total heat transfer coefficient	Subscripts	
.I	$[kg/s m^{-2}]$ Membrane flux	buober g	
Ե Ն	[m/s] Mass transfer coefficient of air side	f	Feed
Ka K	[m/s] Mass transfer coefficient of inside the membrane	s	Solute
k k	[m/s] Total mass transfer coefficient	3	Air
I Ktot	[m] Membrane length	mol	Molecular
L m	[in] Memorane rength	mem	Membrane
Mw N	[Ng/III0] Molecular mass of water [Dimensionless] Membrane number of fibers	c	Cell
IN Nu	[Dimensionless] Membrane number of libers	i	Internal
D		1	Fyternal
г D'	[Pa] Vapor partial pressure of food interphase	+	Central tube
r _{v,f} po	[Pa] Vapor partial pressure of pure water	m	Module
r _{v,f}	[Pa] Vapor partial pressure of parmasta side	n	Doding
r _{v,a} D.	[Pa] vapor partial pressure of permeate side	p in	r dekilig Inlet
Pr	[Dimensionless] Prandue number	111 ovrt	Illiet Outlot
$Q_{\rm f}$	[W/m] Heat flux of feed side	out	Tatal
Q_a	$[W/m]$ Heat flux of all side $[W/m^2]$ Heat flux of all side		Total
Q _m	$[W/m^{-}]$ Heat flux of membrane	W	Effective
Q_v	[W/M] Heat flux due to MD flux	e	Ellective Ven en
К	[J/K moi ⁻] Gas constant	V L	vapor
r	[m] Memorane pore size	n V	Hydraulic
ке	[Dimensionless] Reynolds number	Kn	Knuusen Aastaina
Sc	[Dimensionless] Schmidt number	ant	Antoine
Sh	Dimensionless! Sherwood number		

(Khayet et al., 2000; Souhaimi and Matsuura, 2011). MD gets its name from the similarity with conventional distillation process. Both processes are based on vapor-liquid equilibrium for separation and both processes require heat supplied to the feed for achieving the latent heat of vaporization (Souhaimi and Matsuura, 2011). It can be carried out in various configurations, out of which Direct Contact Membrane Distillation (DCMD) is the most studied and the commonly used in MaC. However, DCMD suffers from severe heat loss due to conduction across the membrane resulting in high temperature polarization.

The objective of this work is to use a relatively less studied configuration of MD, Sweeping Gas Membrane Distillation (SGMD), to generate the required supersaturation to carry out crystallization in an L-ascorbic acid/water solution system. In SGMD, an inert gas is used in the permeate side to sweep away the vapor transferred through the membrane. The use of the inert sweeping gas reduces the conductive heat loss and the mass transfer resistance (Khayet et al., 2003). SGMD remains the least studied MD configuration, as MD was primarily developed for the desalination industry, and hence would require an external condenser to condense the water vapor from the sweep gas, thus complicating the system (Souhaimi and Matsuura, 2011). However, this complication does not apply when the objective is to merely concentrate a solution, which means that SGMD is potentially favorable in MaC.

In order to successfully implement SGMD in MaC, a detailed study

Download English Version:

https://daneshyari.com/en/article/6467935

Download Persian Version:

https://daneshyari.com/article/6467935

Daneshyari.com