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a b s t r a c t 

Probability density function (PDF) methods have significant advantages in modeling turbulent combus- 

tion, in particular because the highly non-linear chemical source terms appear in closed form. The mi- 

cromixing term in the PDF transport equations, representing diffusion in composition space, is however 

unclosed. Physically, micromixing occurs between regions of fluid having similar compositions. It is ex- 

pected and generally shown that models that account for this localness of mixing perform better. In 

this work, a novel variation of the multiple mapping conditioning (MMC) mixing model is proposed. 

MMC makes use of reference variables to localise the mixing and was originally formulated for stochas- 

tic reference variables with standard Gaussian distributions. Here we follow the original interpretation 

but modify it by using a reference variable that has an evolving distribution, according to an Ornstein–

Uhlenbeck process, with statistics that are similar to those of a physical scalar. In the present application 

of the model to nonpremixed combustion, mixture fraction is considered as the scalar; extensions of the 

model may be envisaged for other combustion modes by considering a different scalar variable. While the 

original version of MMC is mathematically elegant, it is conceptually complex and evaluation of model 

coefficients is difficult. The new model is both physically intuitive and its coefficients are easy to deter- 

mine according to desired principles in canonical mixing situations. In Part I of this two-paper set, the 

model is studied analytically for homogeneous and mean scalar gradient flows without chemical reaction 

leading to an approach to set the model parameters that controls the unconditional scalar dissipation 

rate and delivers tunable localness. The behaviour of the model is also examined numerically in simple 

homogeneous mixing situations with and without chemical reaction. In Part II, the new MMC mixing 

model is implemented in the RANS context and validated against experimental data for the Sandia D–F 

flame series. 

© 2017 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 

1. Introduction 

Direct numerical simulation (DNS) of the instantaneous Navier–

Stokes equations is computationally prohibitive for modeling 

practical combustion systems [1] . Reynolds-averaged Navier–

Stokes (RANS) simulation or large-eddy simulation (LES) can 

reduce the computational cost by using averaging or filtering 

operations, respectively. The RANS expression for the evolution of 

the Favre averaged mass fraction, ˜ Y α, of species, α, is 

∂ ρ̄ ˜ Y α

∂t 
+ 

∂ ρ̄ ˜ u i ̃
 Y α

∂x i 
+ 

∂ J α
i 

∂x i 
= ω α − ∂ ρ̄ ˜ u 

′ 
i 
Y ′ α

∂x i 
, (1) 
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where ρ̄, ˜ u i , J α
i 

are the mean density, Favre mean velocity and 

mean molecular flux of species, respectively. The averaging oper- 

ation leads to the unclosed chemical source and turbulent scalar 

flux terms on the right-hand side (RHS) of Eq. (1) where the single 

prime denotes Favre fluctuations. The turbulent flux is commonly 

modelled with reasonable success using the gradient transport 

hypothesis [2] . On the other hand, the non-linearity of the chem- 

ical reaction rates and their interaction with the turbulent mixing 

makes modelling of ω α difficult and various competing and com- 

plementary approaches have been suggested in the literature [2–4] . 

Turbulence–chemistry interactions (TCI) have a dominant effect 

on the formation of pollutants in practical combustors [5,6] . Con- 

ditional moment closure (CMC) [7] , whereby the average reaction 

rate is approximated by integrating the conditionally averaged 
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rate multiplied by the presumed PDF of the conditioning variable, 

has been a successful model for TCI. However, in practice it is 

usually limited to one particular mode of combustion and requires 

sometimes questionable models for the presumed PDF. It also 

becomes cumbersome when higher than first order conditional 

moments are required. Flamelet models [8] share some similarities 

with CMC but, unlike CMC, they are formally restricted to thin 

flame regimes. As a consequence of tabulation, flamelet models 

have advantages in terms of low computational effort. Composition 

PDF methods [9,10] , which are much more general than CMC or 

flamelets, solve the transport equation for the one-point, one-time 

joint Eulerian PDF, f φ , of the composition space, φ = ( Y , h ) , where 

Y = (Y 1 , . . . , Y α, . . . , Y n s ) is the vector of chemical species mass 

fractions and h is the mixture specific enthalpy. The transport 

equation for the Eulerian PDF is given by 

∂ρ f φ

∂t 
+ 

∂ρ ˜ u i f φ

∂x i 
+ 

∂ω k f φ

∂ψ k 

= − ∂ 

∂x i 

[〈 u ′ i | ψ〉 ρ f φ
]

+ 

∂ 

∂ψ k 

[〈
∂ J k 

i 

∂x i 
| ψ 

〉
f φ

]
, 

(2) 

where ψ k is the sample space variable for φk and the terms 

in angular brackets denote conditional Reynolds averages. In 

Eq. (2) , ρ and ω k are functions solely of ψ k . Unlike many other 

combustion models, Eq. (2) does not in itself assume a particu- 

lar combustion regime, and therefore the PDF approach can, in 

principle, be applied to all modes of combustion including non- 

premixed [11,12] , premixed [13–17] , stratified [18] and partially- 

premixed [19] modes. Additionally there is no assumption of thin 

reaction zones so that both fast and slow times scale processes, 

including those associated with pollutants [20] , can be modelled. 

For these statements to be true in practice as well as in principle, 

the closures for the turbulent flux and conditional micro-mixing 

on the RHS of Eq. (2) must preserve the physically correct flame 

structure. As with the mean transport Eq. (1) a gradient model 

is commonly applied for the turbulent flux of the PDF. The con- 

ditional dissipation is modelled through a micromixing operation 

and, as discussed below, the available mixing models have limita- 

tions. Research into improving micromixing models is ongoing. 

It is computationally efficient to recast Eq. (2) into an equiva- 

lent stochastic Lagrangian form and then solve for the evolution of 

notional particles [9] : 

d x ∗i = 

˜ u i d t + 

1 

ρ̄

∂�e f f 

∂x i 
d t + 

√ 

2�e f f 

ρ
d W i , (3) 

d φ∗
k = d φ∗

k,ω + d φ∗
k,mix , (4) 

where the asterisk denotes particle properties, W i ( t ) is an indepen- 

dent isotropic Wiener process and �eff is an effective diffusivity 

defined as 

�eff = μ/σ + μT /σT , (5) 

where μ and μT are the molecular and turbulent dynamic vis- 

cosities, respectively, and σ and σ T are the molecular and turbu- 

lent Schmidt numbers. The terms dφ∗
k,ω 

and dφ∗
k,mix 

represent the 

change in notional particle composition due to chemical reactions 

and mixing in composition space respectively, where the latter 

term is a model for the unclosed molecular mixing term in Eq. (2) . 

The simplest mixing model is interaction by exchange with 

mean (IEM), also known as linear mean square estimation (LSME) 

[21] written as 

d φ∗
k,mix = −1 

2 

C φ

τ
(φ∗

k − ˜ φk ) d t, (6) 

where ˜ φk is the unconditional Favre mean obtained from the en- 

semble of particles at that location, τ is the turbulence time scale 

and C φ is a model constant, nominally of order two. Subramaniam 

and Pope [22] nominate desirable characteristics of mixing models. 

IEM adheres to some of the important characteristics including 

conservation of means, decay of variances, boundedness, linearity 

with respect to scalar values and independence of mixing for each 

scalar. However, IEM violates the principles of localness, relax- 

ation to a Gaussian PDF in homogeneous turbulence and ability 

to capture flamelet combustion. Other conventional models like 

Curl’s [23] and modified Curl’s [24] improve on IEM in that they 

can change the shape of the PDF but share the other drawbacks 

of IEM. The Euclidean minimum spanning tree (EMST) mixing 

model [22] is a higher quality model for most forms of combus- 

tion because it specifically introduces the localness property and 

performs well in flamelet conditions. However, EMST suffers some 

deficiencies as discussed in Ref. [25] including violation of linearity 

and independence and being prone to “stranding” in composition 

space and over-damping of conditional fluctuations [26] . Multiple 

mapping conditioning (MMC), derived by Klimenko and Pope [27] , 

also introduces localness but does so using stationary Gaussian 

reference variables so that linearity and independence are satisfied 

and the scalars relax to Gaussian distributions in homogeneous 

turbulence. Other mixing models are under development including 

the parameterised scalar profile (PSP) model [28] and the shadow 

position mixing model (SPMM) [25] . The latter is an MMC-like 

model although the reference variables representing a shadow 

position of the notional particles have a different physical interpre- 

tation from the scalar reference variables normally used in MMC. 

Vogiatzaki, Kronenburg and co-workers have developed the 

stochastic version of MMC-RANS in recent years [29–31] . They 

demonstrate how the dispersion between the reference variables, 

ξ, having a stationary Guassian distribution, and the scalar fields, 

φ, can be used to independently model the conditional fluctuations 

while maintaining the correct rate of decay of the macroscale un- 

conditional fluctuations. Deterministic implementations of original 

MMC are also available for both RANS [32] and LES [33] and these 

bear much resemblance to CMC. The mathematical elegance of 

original MMC implemented in this way is somewhat undermined 

by the complexity and non-linearity of the mapping functions 

which relate the Gaussian reference variables to the, in general, 

non-Gaussian scalar fields. MMC has evolved from its original 

form based on Markov-generated stationary Gaussian reference 

variables to a generalised model with other types of reference 

variables including those derived from a binomial Langevin model 

[34,35] and non-Markov Lagrangian quantities obtained from 

underlying DNS or LES fields [36] . 

In the present work, a novel, stochastic variant of the original 

formulation of MMC is developed. Rather than using a strictly 

Gaussian and stationary reference variable, the new reference 

variable is non-stationary and is designed to have similar statistics 

(namely mean and variance) to the mixture fraction. The model 

retains the inherent strengths of MMC in satisfying many of the 

characteristics of a quality mixing model and additionally has the 

advantage of being physically more intuitive than the original 

formulation. As a consequence the model coefficients are more 

easily determined and the numerical implementation is robust. 

The governing equations and properties of the new MMC 

mixing model are described in Section 2 . In Section 3 , the mixing 

model is analysed in the context of homogeneous, isotropic, inert, 

turbulent flow. A statistically stationary case with a mean scalar 

gradient is also considered. An approach to setting the model co- 

efficients that provides a physically specifiable dissipation rate for 

unconditional scalar fluctuations and an independently specifiable 

degree of localness is outlined based on analytical results for these 

two cases. The model behaviour is also studied numerically in the 

homogeneous test case. The model performance for the homo- 

geneous flamelet combustion test case of Norris and Pope [37] is 

investigated in Section 4 . The controlled enforcement of mix- 
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