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a b s t r a c t 

A general strategy for analysis and reduction of uncertain chemical kinetic models is presented, and its 

utility is illustrated in the context of ignition of hydrocarbon fuel–air mixtures. The strategy is based 

on a deterministic analysis and reduction method which employs computational singular perturbation 

analysis to generate simplified kinetic mechanisms, starting from a detailed reference mechanism. We 

model uncertain quantities in the reference mechanism, namely the Arrhenius rate parameters, as ran- 

dom variables with prescribed uncertainty factors. We propagate this uncertainty to obtain the probabil- 

ity of inclusion of each reaction in the simplified mechanism. We propose probabilistic error measures 

to compare predictions from the uncertain reference and simplified models, based on the comparison of 

the uncertain dynamics of the state variables, where the mixture entropy is chosen as progress variable. 

We employ the construction for the simplification of an uncertain mechanism in an n-butane–air mixture 

homogeneous ignition case, where a 176-species, 1111-reactions detailed kinetic model for the oxidation 

of n-butane is used with uncertainty factors assigned to each Arrhenius rate pre-exponential coefficient. 

This illustration is employed to highlight the utility of the construction, and the performance of a family 

of simplified models produced depending on chosen thresholds on importance and marginal probabilities 

of the reactions. 

© 2017 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 

1. Introduction 

Chemical model reduction strategies generally start from a de- 

tailed chemical kinetic mechanism as the reference or baseline 

gold-standard. Given this standard, a specified range of operat- 

ing conditions or set of state vectors, a select set of Quantities 

of Interest (QoIs), and a requisite error threshold, a model re- 

duction strategy produces a simplified mechanism of associated 

size/complexity [1,2] . 

This strategy, despite its effectiveness, nonetheless relies on the 

quality of the starting mechanism. Yet, there is typically signifi- 

cant uncertainty in both the structure of available detailed mech- 

anisms for hydrocarbon fuels, and in their thermodynamic and 

chemical kinetic rate parameters. Therefore, in principle, the anal- 

ysis/reduction processes that provide simplified mechanisms start- 

ing from the detailed mechanism, and the measures of quality of 

a simplified mechanism relative to the detailed mechanism, need 

to account for both model and parametric uncertainties in both 

mechanisms. This is a challenging, yet highly relevant topic. Over- 
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confidence in the detailed mechanism can lead to a misplaced fo- 

cus on tight error tolerances in the simplified model, relative to a 

faulty/uncertain baseline. Simplified model errors ought to be han- 

dled along with detailed model uncertainties in the same error 

budget. Any error norm between simplified and detailed models 

ought to be weighted appropriately with attendant uncertainties. 

Moreover, the fact that both the detailed and simplified mecha- 

nisms are burdened with uncertainty suggests that any measures 

of distance between their predictions be done in a probabilistic 

context. This line of reasoning highlights the need for rethinking 

model analysis/reduction strategies for uncertain chemical kinetic 

models. 

The above is a significant undertaking with a range of technical 

challenges. There has been some work addressing model reduction 

under uncertainty in the context of proper orthogonal decompo- 

sition (POD) [3] , albeit for small degrees of uncertainty. The dy- 

namical analysis of uncertain ordinary differential equation (ODE) 

systems has also received some attention [4,5] , in a full probabilis- 

tic setting. Further, from the process control perspective, there has 

also been work [6,7] addressing dynamical systems reduction un- 

der parametric uncertainty, relying on balanced truncation [8,9] , 

singular value decomposition, and sensitivity analysis. We note 

that this work [6,7] presumes parameter variations in intervals, 
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with no probabilistic information. It is not clear, however, how well 

these methods, traditionally employed for process control in linear 

or mildly-nonlinear contexts, and, more specifically applied by Sun 

and Hahn [6,7] for chemical process and isothermal biochemical 

systems modeling, extend to the strongly nonlinear thermally ac- 

tivated stiff kinetics of hydrocarbon fuels. It is fair to say that the 

challenge of dynamical analysis and uncertain chemical model sim- 

plification in hydrocarbon kinetics of relevance to combustion has 

yet to receive significant attention. 

We lay out in the following a general strategy for analysis and 

reduction of uncertain chemical kinetic models, and describe its 

utilization in the context of ignition of hydrocarbon fuel–air mix- 

tures. The construction is fully probabilistic, allowing for an arbi- 

trary uncertainty structure. It is based on an existing analysis and 

reduction strategy, using computational singular perturbation (CSP) 

analysis [10,11] , that has been used extensively for deterministic 

models of hydrocarbon fuels [1,2] . We begin in the following with 

a brief outline of the deterministic simplification strategy, before 

proceeding to the description of the proposed approach. 

2. Deterministic simplification algorithm 

In the CSP-based skeletal reduction algorithm, the criterion for 

selecting the subset of reactions and species to be retained is based 

on their relevance to the fast or slow dynamics of a prescribed set 

of “target” species, the concentration of which is desired to be ac- 

curately reproduced by the skeletal mechanism. This algorithm re- 

lies on the decomposition of the chemical kinetic processes into 

fast and slow components, using CSP, and on the identification 

of the processes that produce the most significant contributions 

in either the fast or slow components [11–14] . As a measure of 

the degree to which a species contributes to the fast/slow dy- 

namics of the target species, the algorithm adopts the fast/slow 

CSP Importance Indices, which measure the contribution of each 

elementary reaction in the detailed mechanism to the fast and 

slow components of each species production rate [15–17] . Defin- 

ing as (I) i 
k slow/fast 

the Importance Index of the k th reaction to the 

i th species in either the fast or slow subspace and given a user- 

specified tolerance τ , the k th reaction is included in the simplified 

mechanism if (I) i 
k slow/fast 

> τ . The rigorous definition of the Impor- 

tance Indices and the complete algorithm can be found in [1,2] . 

This approach is very useful in generating a spectrum of simpli- 

fied mechanisms of different sizes, each associated with a given 

degree of fidelity in predicting chosen QoIs specified by a toler- 

ance on the Importance Indices. More details on the simplification 

algorithm can be found in [1,2,18,19] . 

3. Simplification strategy under uncertainty 

Consider a detailed chemical mechanism M 

∗(λ) , defined by 

a set of species S ∗ = { S 1 , . . . , S N } and elementary reactions R 

∗ = 

{ R 1 , . . . , R M 

} , where λ is the relevant vector of uncertain parame- 

ters, e.g. the Arrhenius rate parameters of all reactions. Consider 

the auto-ignition process of a hydrocarbon fuel–air system in a 

constant pressure batch-reactor, for a range of initial tempera- 

ture and stoichiometry, which is used to compute a set of igni- 

tion trajectories, providing a database of states D = { X (1) , . . . , X (K) } , 
where X ∈ R 

N+1 is the state vector composed of temperature and 

the N mole fractions. Given that λ is uncertain, let D λ denote the 

database computed for a given value of λ. 

For any given D λ, and considering a given set of QoIs – such 

as the set of target species – and a tolerance τ on Importance In- 

dices [1,2] , the CSP-based analysis and simplification strategy pro- 

vides a simplified mechanism M τ (λ) , being a subset of the start- 

ing mechanism with species S τ (λ) and reactions R τ (λ) . In fact, 

given the starting model specification, the simplified model can 

be specified compactly in terms of a vector of M binary indicators 

ατ (λ) = (ατ
1 
(λ) , . . . , ατ

M 

(λ)) T , where 

ατ
r (λ) = 

{
1 for reaction R r ∈ R τ (λ) 
0 otherwise . 

, r = 1 , . . . , M (1) 

In fact, ατ ( λ) is a multi-index that specifies 2 M models. We can 

view the process of database generation, analysis, and model sim- 

plification as an input–output map: 

f τ (λ) : λ → ατ (λ) , (2) 

which provides a convenient abstraction for the use of uncertainty 

quantification (UQ) methods to account for uncertainty in λ in the 

process of simplified model selection. 

Placing ourselves in a probabilistic UQ setting, uncertain quanti- 

ties are represented as random variables. Accordingly, λ is defined 

as a real-valued random vector with a presumed joint Probabil- 

ity Density Function (PDF) p ( λ). The specification of this PDF is 

a major challenge in general, requiring recourse to available data 

on each parameter in the model, and allowing proper accounting 

for the correlation among different uncertain parameters. We dis- 

cuss this challenge, as regards chemical mechanisms for combus- 

tion, later below in Section 5 . 

Generating n random samples from p ( λ), { λ(1) , . . . , λ(n ) } , the 

input–output map of Eq. (2) provides corresponding samples 

{ ατ j } n 
j=1 

, where ατ j = ατ (λ( j) ) , so that we can estimate, ∀ α = 

(α1 , . . . , αM 

) , the joint probabilities, 

P τ (α) ≈ 1 

n 

n ∑ 

j=1 

δατ j α (3) 

where δατ j α is the Kronecker delta, 

δατ j α = 

{
1 if α = ατ j 

0 otherwise. 
(4) 

Thus, the contribution of each sample j to the sum for P τ ( α) in 

Eq. (3) is 1 if ατ j = α, and 0 otherwise. Further, we have 

δατ j α = 

M ∏ 

i =1 

δ
ατ j 

i 
αi 

. (5) 

The joint probabilities provide a wealth of information on the cou- 

pling among reactions. For example, marginalizing over M − 2 re- 

actions, provides the 2-way joint probabilities for any two given 

reactions ( p, q ), 

P τ (αp , αq ) ≈ 1 

n 

n ∑ 

j=1 

δ
ατ j 

p αp 
δ
ατ j 

q αq 
. (6) 

This provides information on the relevance of two reactions p and 

q being included/excluded jointly or separately in the model. Sim- 

ilarly, this analysis can be generalized to any subset of reactions 

forming a pathway of interest. Moreover, extending the scope to 

a full sub-mechanism, the joint picture provides a statement con- 

cerning the probability of any given mechanism that is a subset 

of the detailed model. Given a reasonable search strategy on α, 

one can thus select the model with the highest P ( α) as the one 

most supported by the reduction strategy. Alternatively, if multi- 

ple models have comparable probability, a Bayesian model averag- 

ing [20,21] strategy can be employed to provide a pooled/average 

prediction. 

Given the complexity of the joint-picture, and the need for large 

numbers of samples to establish multivariate statistics, we con- 

fine ourselves here to the marginal probabilities for individual re- 

actions, 

P τ (αi ) ≈
1 

n 

n ∑ 

j=1 

δ
ατ j 

i 
αi 

, i = 1 , . . . , M. (7) 
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