
Combustion and Flame 174 (2016) 1–15 

Contents lists available at ScienceDirect 

Combustion and Flame 

journal homepage: www.elsevier.com/locate/combustflame 

On the merits of extrapolation-based stiff ODE solvers for 

combustion CFD 

A. Imren 

∗, D.C. Haworth 

Research Building East, Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802, USA 

a r t i c l e i n f o 

Article history: 

Received 6 May 2016 

Revised 27 June 2016 

Accepted 15 September 2016 

Available online 28 September 2016 

Keywords: 

Computational fluid dynamics 

Detailed chemistry 

Stiff ODE solver 

Dynamic adaptive chemistry 

Compression-ignition engine 

a b s t r a c t 

In applications including compression-ignition engines, there is a need to accommodate more realistic 

chemistry in computational fluid dynamics (CFD) simulations. Here, we consider approaches where a 

chemical mechanism is implemented in an application CFD code, an operator-splitting strategy is used to 

isolate the chemical source terms, and a stiff ordinary differential equation (ODE) solver is used to com- 

pute the changes in composition due to chemical reactions for each computational element. Chemical 

source terms often dominate the computational effort, and reducing the high computational cost associ- 

ated with realistic chemistry has been the subject of extensive research. This includes work on improved 

stiff ODE solvers, which in most cases has centered on backward differentiation formula (BDF) methods. 

Here a different class of solvers is considered, based on extrapolation methods. Key elements of stiff ODE 

solvers are reviewed briefly, focusing on differences between BDF methods and extrapolation methods. 

Issues related to using a stiff ODE solver with operator splitting in a CFD code (where the solver is re- 

peatedly stopped and restarted) are emphasized. Homogeneous-reactor results are presented first. There 

the relationship between user-specified error tolerances and solution accuracy is explored, tradeoffs be- 

tween accuracy and CPU time are shown, and close-to-linear increase in CPU time with increasing chem- 

ical mechanism size is demonstrated. Engine results are presented next, including both homogeneous- 

charge compression-ignition engines, and direct-injection (nonhomogeneous) compression-ignition en- 

gines. There some results are presented where the stiff ODE solver is combined with a dynamic adaptive 

chemistry scheme. In all cases, it is found that the extrapolation solver offers significant advantages in 

accuracy and computational efficiency compared to the BDF solver. While the results presented are for 

one BDF solver (CVODE) and one extrapolation solver (SEULEX), it is anticipated that the insight into how 

stiff ODE solvers behave in combustion CFD will be broadly applicable to other solvers in these general 

classes. 

© 2016 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 

1. Introduction 

Across multiple domains of application, there is a pressing need 

to incorporate more realistic chemical kinetics in computational 

fluid dynamics (CFD) simulations of chemically reacting flows. For 

example, increasingly large chemical mechanisms are needed to 

accurately predict autoignition, heat release and pollutant emis- 

sions in multidimensional modeling of in-cylinder processes in 

compression-ignition engines, especially for the thermochemical 

environments that are of interest for next-generation engines [1,2] . 

Here, the focus is on approaches where the chemical mechanism 

of interest is carried directly in the CFD simulation (versus being 

pretabulated in flame libraries, for example), an operator-splitting 
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strategy is invoked to isolate the chemical source terms in the gov- 

erning equations, and the changes in composition due to chemical 

reactions for each computational element (e.g., each finite-volume 

cell in the case of Eulerian CFD, or each computational particle 

in the case of a Lagrangian-particle-based transported probability 

density function – PDF – method [3] ) are computed by solving a 

system of ordinary differential equations (ODEs), typically using a 

stiff ODE solver. This does not preclude initial prereduction of a 

detailed chemical mechanism. Further information on why this ap- 

proach is of interest is provided in Section 2 . 

In this scenario, calculation of chemical source terms usually 

dominates the computational effort, and several strategies have 

been developed to reduce the high computational overhead of 

carrying realistic chemistry. These include: on-the-fly mechanism 

reduction strategies, where the chemical mechanism is reduced 

locally for each computational element based on local thermo- 

chemical conditions (e.g., directed-relation-graph-based dynamic 
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adaptive chemistry – DRG/DAC [4,5] ); storage-retrieval (tabulation) 

strategies, where chemical source terms are stored as they are 

computed and are reused later in the simulation when similar 

thermochemical conditions are encountered (e.g., in situ adaptive 

tabulation – ISAT [6] ); clustering strategies, where computational 

elements having similar initial conditions are combined to reduce 

the number of ODE integrations required (e.g., chemistry coordi- 

nate mapping – CCM [7] ); hardware-based strategies that take ad- 

vantage of specific computer architectures (e.g., graphics process- 

ing units – GPUs [8] ); and combinations of two or more of these 

strategies (e.g., combining dynamic adaptive chemistry with tabu- 

lation [9,10] , or dimension reduction with tabulation [11,12] ). 

At some point, all of these on-the-fly chemistry acceleration 

strategies (as well as most prereduction strategies) require a stiff

ODE solver, and improved stiff ODE solvers, tailored to the com- 

bustion chemistry problem, have been the subject of recent inves- 

tigations [13–15] . Much of the work to date on stiff ODE solvers 

for combustion chemistry has focused on solver performance for 

isolated homogeneous reactors, and has not directly considered 

the implications on solver performance of repeated solver stop- 

ping/reinitialization in a CFD code. Also, most work has focused 

on backward differentiation formula (BDF) methods for solving sys- 

tems of stiff ODEs. Here, a fresh look is taken at stiff ODE solvers 

for combustion CFD by explicitly considering the reinitialization 

problem, and this leads to consideration of a different class of stiff

ODE solvers based on extrapolation methods [16,17] . 

The remainder of the paper is organized as follows. In Section 2 , 

the motivation for operator splitting and stiff ODE solvers in com- 

bustion CFD is presented, key elements of stiff ODE solvers are 

discussed, the reinitialization problem is introduced, a basic DAC 

method is reviewed (for subsequent application to engine combus- 

tion CFD, in combination with the stiff ODE solvers), and other el- 

ements of the CFD algorithms that have been used here are de- 

scribed. The chemical mechanisms that have been considered are 

introduced in Section 3 , and results are presented in Section 4 . 

Three general configurations are considered: homogeneous re- 

actors, homogeneous-charge compression-ignition (HCCI) engines 

and direct-injection compression-ignition engines. The emphasis is 

on comparisons of computational time required versus solution ac- 

curacy for different stiff ODE solver variants. Conclusions and next 

steps are summarized in the final section. 

2. Operator splitting and stiff ODE solvers for combustion CFD 

For the class of combustion CFD problems that is of interest 

here, key elements of the computational strategy are: (1) invoke 

operator splitting to isolate the chemical source terms in the gov- 

erning equations; (2) integrate a system of highly nonlinear ODEs 

to compute the changes in composition due to chemical reactions 

over a specified computational time step using a stiff ODE solver; 

and (3) implement other chemistry acceleration strategies (in addi- 

tion to improved stiff ODE solvers) to further reduce the computa- 

tional time required for chemistry calculations – here DRG–based 

DAC is considered, as an example. Each of these is discussed in 

the following subsections. The importance of solver reinitialization 

is emphasized. In the final subsection, the specific CFD algorithms 

that have been used are described briefly. 

2.1. Operator splitting 

We consider a reacting mixture of N S chemical species. The 

mixture composition can be expressed in terms of the species 

mass fractions ( Y α for species α), and the equations governing 

the evolution of Y α can be written as Eulerian partial differential 

equations (in the case of finite-volume-based CFD, for example) or 

as Lagrangian ordinary differential equations (in a particle-based 

transported PDF method [3] , for example). In either case, one can 

invoke operator splitting to isolate the changes in composition due 

to chemical reactions. Then for each computational element (Eule- 

rian finite-volume cell, or Lagrangian particle), the change in com- 

position due to chemical reactions over a computational time step 

�t CFD can be computed as the solution to a nonlinear initial-value 

problem: 

d Y 

dt 
= S 

(
Y (t) 

)
with Y (t = t 0 ) = Y 0 , 

or Y (t 0 + �t CFD ) = Y 0 + 

∫ t 0 +�t CFD 

t 0 

S 
(
Y (t) 

)
dt , (1) 

where Y and S are vectors of length N φ = N S + 1 ( N S species mass 

fractions plus temperature), and S is the mass-based rate of pro- 

duction of species α or of temperature. The method that is chosen 

to solve Eq. 1 depends on the physical time scales in the prob- 

lem, compared to the computational time step �t CFD . For typi- 

cal hydrocarbon-air chemical mechanisms at engine-relevant con- 

ditions, the chemistry is stiff: that is, the range of relevant time 

scales (which can be quantified formally using eigenvalue analy- 

sis, or estimated using various approximations) varies over several 

orders of magnitude. The longest chemical time scale of interest 

is the time to reach chemical equilibrium from the prescribed ini- 

tial condition: e.g., τchem , max = τequil ≈ 10 −4 − 10 −3 s. The value of 

τ chem, max can be even larger than this, depending on the chemical 

mechanism, thermochemical conditions, and the physics of interest 

(the time required for NO to reach equilibrium can be much longer, 

for example). The shortest chemical time scales are typically sev- 

eral orders of magnitude smaller: e.g., τchem , min ≈ 10 −9 − 10 −8 s. 

The value of τ chem, min can be even smaller than this, depend- 

ing on the chemical mechanism and thermochemical conditions. 

The computational time step that is used in CFD is usually de- 

termined based on considerations other than chemistry (e.g., cap- 

turing transport or fuel-spray processes, or controlling splitting er- 

rors), and a typical value for compression-ignition engine applica- 

tions is on the order of microseconds: �t CFD ≈ 10 −6 − 10 −5 s, say. 

This is still orders of magnitude larger than the smallest relevant 

chemical time scale, and in that case, an implicit stiff ODE solver 

is appropriate to solve the system of ODEs given in Eq. 1 . 

2.2. Stiff ODE solvers 

The nonlinear initial-value problem of Eq. 1 can be solved using 

variants of Newton iteration, where a succession of linear prob- 

lems is solved whose solution eventually converges to the solu- 

tion of the nonlinear problem. This involves subdividing �t CFD into 

smaller subintervals �t ODE . For an explicit solver, or for an im- 

plicit solver that reverts to explicit time stepping at some point, 

the smallest value of �t ODE can be expected to be of the or- 

der of τ chem, min . To advance the solution over a subinterval of 

the CFD time step from time t n (where Y n = Y (t = t n ) is known) 

to time t n +1 (where Y n +1 = Y (t = t n +1 ) is to be found) and with 

�t ODE ≡ t n +1 − t n , the problem can be linearized as follows: 

Y n +1 = Y n + 

∫ t n +1 

t n 

(
S n + J n 

(
Y n +1 − Y n 

)
+ O(�t 2 ODE ) 

)
dt 

= Y n + S n �t ODE + J n 
(
Y n +1 − Y n 

)
�t ODE + O(�t 2 ODE ) , 

so that on rearranging and neglecting higher-order terms 

( O(�t 2 
ODE 

)) : (
I − J n �t ODE 

)(
Y n +1 − Y n 

)
= S n �t ODE . (2) 

Here, I is the identity matrix and J n ≡ dS 
dY 

| n is the Jacobian matrix 

evaluated at time level n . The final equation provides the basis of 

an iterative procedure that can be used to solve for Y n +1 . On each 

iteration, S is recomputed based on the most recent Y, J is updated 
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