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a b s t r a c t 

A simple model of radiating diffusion flames considered by Kavousanakis et al. (2013) [1] is extended to 

two spatial dimensions. A large variety of stationary spatially localized states representing the breakup 

of the flame front near extinction is computed using numerical continuation. These states are organized 

by a global bifurcation in space that takes place at a particular value of the Damköhler number and their 

existence is consistent with current understanding of spatial localization in driven dissipative systems. 

© 2016 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 

1. Introduction 

In premixed flames, strong coupling between aerodynamics and 

reaction/diffusion processes arising from strong thermal expansion 

gives rise to Darrieus–Landau instabilities [2] . In diffusion flames, 

in contrast, thermal expansion plays a minor role in the thermal- 

diffusive processes that are behind the presence of instabilities in 

non-premixed flames [3] . The origin of these instabilities, which 

can lead to spatially uniform pulsation or to stationary or oscillat- 

ing cellular structures, has been reviewed by Matalon [4,5] . Mod- 

els of non-premixed flames that neglect aerodynamic effects have 

proved particularly useful in studies of turbulent partially pre- 

mixed combustion. A well-known example is provided by the tur- 

bulent flamelet model of Peters [6] whose dynamics are dominated 

by diffusive processes, and not advection. The now classical flat 

unstrained flame introduced by Kirkbey and Schmitz [7] has been 

extensively studied, and numerous stability analyses [8–11] have 

shown that the Lewis numbers of both reactants play an essential 

role in selecting the nature of the possible thermal-diffusive insta- 

bilities that appear when approaching extinction (here necessarily 

via lean mixtures). Examples of these instabilities can be found in 

axisymmetric jet configurations, both experimentally [12–14] and 

numerically [15] , as well as in tubular flames [16,17] and in un- 

strained flames [18,19] . 

The present paper is devoted to shedding additional light on 

the properties and dynamics of diffusion flames near flame ex- 
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tinction. Of particular interest in this connection is the dynami- 

cal behavior preceding extinction, including intermittency, break- 

up, hopping, and other types of time dependence. Diffusion flames 

typically exhibit cellular structures, often accompanied by tempo- 

ral oscillations. Existing studies range from detailed simulations 

of models that retain as many of the basic processes as possible 

to highly simplified model systems, designed to exhibit an un- 

derstanding of the qualitative properties of such flames, usually 

through the use of linear stability analysis in time, e.g., [20] . Such 

model studies are useful in developing both physical intuition and 

a mathematical understanding of the observed transitions. The lat- 

ter often relies on bifurcation theory and relevant dynamical sys- 

tems theory [1] . 

This paper focuses on the spatial structure of diffusion flames in 

the extinction regime, but goes much beyond linear stability anal- 

ysis. Specifically, we show that a well-known mechanism respon- 

sible for the presence of spatially localized structures in continu- 

ous systems described by partial differential equations applies to 

simple models of radiating diffusion flames, and explore its conse- 

quences for the predictions of the model. This mechanism is math- 

ematical in nature, and employs an understanding of this type of 

model developed using ideas based on the notion of spatial dy- 

namics: treating the spatial profile of a stationary solution of the 

equations as a consequence of evolution in the spatial variable, in 

other words, as if space were like time [21] . This is a powerful 

idea that makes most sense in systems with one unbounded direc- 

tion. Of course, real systems are defined by boundary-valued prob- 

lems whereas time-like problems are solved with initial conditions. 

It turns that this difference is not crucial, and that much can be 

deduced based on this approach even when the domain is finite, 

provided it is sufficiently large. This approach is extended here to 
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Fig. 1. The S-shaped branch of one-dimensional equilibria in terms of the average 

temperature 〈 T 〉 ≡ (1 / 2) 
∫ 1 
−1 T̄ (x ) dx as a function of the Damköhler number Da for 

Le o = Le f = 1 , T b = 0 . 1 , T a = 1 and R = 0 . 2 , showing the folds A and B (solid dots) 

and a Hopf bifurcation at Da ≈ 1800 ( H , open square symbol) on the upper branch 

S + . The labels S 0 and S − indicate the middle and lower branches. Stable (unstable) 

branches are shown in solid (broken) lines. 

two spatial dimensions and used to compute a large variety of sta- 

tionary spatially localized states representing the breakup of the 

flame front near extinction. These states are organized by a global 

bifurcation in space that takes place at a particular value of the 

Damköhler number and their existence is consistent with current 

understanding of spatial localization in driven dissipative systems. 

We consider a simple model of a radiating diffusion flame stud- 

ied in [1] . Specifically, we consider a one-dimensional flame be- 

tween a pair of porous walls that allow fuel (mass fraction Y f ) 

to diffuse in from the left ( x = −1 ) and oxidizer (mass fraction 

Y o ) to diffuse in from the right ( x = 1 ), both assumed to have 

the same temperature T b . The burning process is described by 

a binary one step process of Arrhenius type with reaction term 

w = Da Y o Y f exp (−T a /T ) , where T is the instantaneous temperature 

and the constant T a represents the activation temperature. This 

temperature-activated process releases heat that is redistributed 

via radiation. Convection is ignored. The system is described by the 

nondimensional equations 

∂T 

∂t 
= 

∂ 2 T 

∂x 2 
+ w − R Da 

(
T 4 − T 4 b 

)
, (1) 

Le o 
∂Y o 

∂t 
= 

∂ 2 Y o 
∂x 2 

− w, (2) 

Le f 
∂Y f 

∂t 
= 

∂ 2 Y f 
∂x 2 

− w (3) 

with the boundary conditions 

T = T b , Y f = 1 , Y o = 0 at x = −1 , (4) 

T = T b , Y f = 0 , Y o = 1 at x = +1 . (5) 

Here Le o and Le f are the Lewis numbers of the oxidizer and fuel, 

respectively, R is a parameter, and Da is the Damköhler number. 

Steady solutions ( ̄T (x ) , ̄Y o (x ) , ̄Y f (x )) of this boundary value 

problem are independent of Le o , Le f and reveal the presence of 

the classic S-shaped response curve as a function of the Damköh- 

ler number first identified by Liñán [22] and Peters [23] . Figure 1 

shows a typical result in terms of the spatial average of the tem- 

perature, 〈 T 〉 ≡ (1 / 2) 
∫ 1 
−1 T̄ (x ) dx, plotted as a function of Da . In the 

following we refer to the states on the upper branch of the curve 

as S + while those on the lower branch are labeled S −; the states 

in between are labeled S 0 ( Fig. 1 ). The stability of this solution was 

examined in [1] for Le o = Le f = 1 . The middle segment S 0 of the S- 

shaped response was found to be unstable, with a real eigenvalue 

passing through zero at both the left and right folds, labeled A and 

B in Fig. 1 and represented as solid circles, as expected on the basis 

of standard bifurcation theory. In addition, the authors identified a 

sequence of Hopf bifurcations on the S + branch, the first of which 

destabilizes S + as Da increases (square symbol in Fig. 1 ), leading 

to temporal oscillations. Other Hopf bifurcations restabilize S + at 

larger Da (not shown), so that in all cases the large Da part of S + 

was found to be stable. This is of course the ignited state. Thus the 

results of [1] can be interpreted as showing that, within this model 

at least and for appropriate parameter values, the flame undergoes 

oscillations prior to extinction as Da decreases. 

In this paper, we are interested in the steady solutions that bi- 

furcate from the folds A and B on the S-shaped branch when the 

problem is extended to the ( x, y ) plane, −∞ < y < ∞ . We refer 

to the y direction as the transverse direction. In other words, we 

study steady solutions of the problem 

∂T 

∂t 
= 

∂ 2 T 

∂x 2 
+ 

∂ 2 T 

∂y 2 
+ w − R Da 

(
T 4 − T 4 b 

)
, (6) 

Le o 
∂Y o 

∂t 
= 

∂ 2 Y o 
∂x 2 

+ 

∂ 2 Y o 
∂y 2 

− w, (7) 

Le f 
∂Y f 

∂t 
= 

∂ 2 Y f 
∂x 2 

+ 

∂ 2 Y f 
∂y 2 

− w (8) 

with the y -independent boundary conditions (4) –(5) on x = ±1 

and periodic boundary conditions in y with a large spatial period 

L y � 1. The resulting system is spatially reversible, i.e., it is invari- 

ant under the transformation y → −y . This is an important prop- 

erty of the model that has important consequences for the spatial 

eigenvalues of the base ( y -invariant) state [21] . 

As in the one-dimensional case steady solutions of this prob- 

lem are necessarily independent of the Lewis numbers Le o , Le f . 

Moreover, one class of solutions consists of those found in [1] , ex- 

tended uniformly in y . However, when the stability of these solu- 

tions is examined with respect to y -dependent perturbations one 

finds that other, y -dependent, solutions may be present. This is so 

despite the fact that there is no bifurcation to periodic states in 

the y direction, the so-called striped flames. This fact can be es- 

tablished by examining the linear problem for an infinitesimal per- 

turbation ( a ′ ( x, y, t ), b ′ ( x, y, t ), c ′ ( x, y, t )) of the one-dimensional 

time-independent solution ( ̄T (x ) , ̄Y o (x ) , ̄Y f (x )) . This linear prob- 

lem can be separated by writing (a ′ (x, y, t) , b ′ (x, y, t) , c ′ (x, y, t)) = 

(a (x ) , b(x ) , c(x )) exp (σ t + iky ) . The resulting k -dependent linear 

problem has no solutions with zero growth rate σ when k � = 

0, indicating the absence of a pattern-forming Turing instability. 

However, when k = 0 the linear problem does have two locations 

where σ = 0 . These are precisely the folds A and B on the S-shaped 

branch, where – as already mentioned – the stability problem for 

the one-dimensional solution ( ̄T (x ) , ̄Y o (x ) , ̄Y f (x )) necessarily has a 

zero eigenvalue. 

The paper is organized as follows. In Section 2, we provide 

a brief summary of the essential input from dynamical systems 

theory that guides our study. Detailed results are presented in 

Section 3 and these confirm the bifurcation structure anticipated in 

Section 2 . The paper concludes with a brief discussion and conclu- 

sions. The numerical procedure used to compute localized struc- 

tures in the present system is described in the Appendix . 

2. A brief review of the theory 

The theory summarized below applies to systems with a sin- 

gle unbounded direction such as the y direction in the present 

problem. We suppose that the system exhibits an S-shaped branch 
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