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a b s t r a c t 

This paper analyzes the exothermic reaction of an initially cold gaseous mixture flowing with a mod- 

erately large Reynolds number along a cylindrical pipe with constant wall temperature. An overall irre- 

versible reaction with an Arrhenius rate having a large activation energy is used for the chemistry de- 

scription. The flow is chemically frozen in the cold entrance region, where the velocity evolves towards 

the Poiseuille profile as the gas temperature increases towards the wall value, ushering in a reaction stage 

during which the rate of heat transfer from the wall changes from positive to negative. The subsequent 

downstream evolution of the flow depends critically on the competition between the heat released by 

the chemical reaction and the heat-conduction losses to the wall, as measured by the Damköhler num- 

ber δ, first introduced by Frank-Kamenetskii in his seminal analysis of thermal explosions in cylindrical 

vessels. For values of δ below the critical value δ = 2 corresponding to the quasi-steady explosion limit, 

heat losses to the wall keep the gas temperature close to the wall value, so that the chemical reaction 

occurs slowly along the pipe in a flameless mode, which is analyzed to give an implicit expression for the 

streamwise reactant distribution. By way of contrast, for δ > 2 the slow reaction rates occur only in an 

initial ignition region, which ends abruptly when very large reaction rates cause a temperature runaway, 

or thermal explosion, at a well-defined location, whose computation must account for the temperature 

found at the end of the entrance region. The predictions of the large-activation-energy analyses, including 

ignition distances for δ > 2 and flameless reactant consumption rates for δ ≤ 2, show good agreement 

with numerical computations of the reactive pipe flow for finite values of the activation energy. 

© 2017 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 

1. Introduction 

The safe storage and transportation of reactant gas mixtures 

requires conditions that ensure a negligibly small reaction rate, 

achieved in storage vessels and transport pipes by lowering suf- 

ficiently the wall temperature. The seminal investigation of this 

problem is due to Frank-Kamenetskii (FK) [1] , who studied a re- 

acting mixture undergoing an exothermic chemical reaction in a 

centrally symmetric closed vessel with constant wall tempera- 

ture. His analysis employed an overall irreversible reaction with 

an Arrhenius rate having a large activation energy, an appropriate 

model to represent the strong temperature dependence of the rate- 

controlling oxidation reactions in typical fuel–air mixtures [2,3] . 

The resulting gas-temperature distribution is seen to depend on 

the competition of the heat released by the chemical reaction and 

the heat losses to the wall, characterized by the Damköhler num- 

ber δ, defined as the ratio of the conduction time across the vessel 
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to the relevant characteristic time (i.e. the homogeneous thermal- 

explosion time at constant pressure) evaluated at the wall tem- 

perature [3] . A slowly reacting flameless mode of combustion is 

found for values of δ below a critical value, when the heat losses 

to the wall are able to limit the temperature rise, in such a way 

that the reaction rate does not change in order of magnitude from 

its near-wall value. Since the overall heat-release rate is propor- 

tional to the volume of reacting gas while the heat-loss rate to 

the wall is proportional to the wall surface, for a given wall tem- 

perature there exists a limiting size, corresponding to a critical 

value of δ, above which a slow reaction cannot be maintained, and 

is replaced by a localized temperature runaway that leads to the 

formation of a flame [4,5] . More recent analyses of slowly react- 

ing mixtures in closed vessels have addressed additional aspects 

of the problem, including the effects of pressure increase on the 

ignition time [6] and of buoyancy-induced motion on explosion 

limits [7–10] . 

The results of the FK analysis find direct application in connec- 

tion with the storage of reactant mixtures, defining critical sizes 

for thermal explosions in chemically reacting systems. A related 

problem addressed here is that of reactant transportation in pipes, 
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analyzed previously in a simplified configuration [11] . Specifically, 

we consider below the discharge of a reactant mixture stored in a 

cold vessel at temperature T ′ I through a pipe whose wall temper- 

ature is kept at a constant temperature T ′ o > T ′ I with T ′ o − T ′ I ∼ T ′ o . 

The Damköhler number δ introduced by Frank-Kamenetskii for the 

analysis of thermal explosions in cylindrical vessels emerges as 

the main governing parameter [11] . Our analysis identifies the ex- 

istence of an entrance region with negligible chemical reaction, 

where the gas temperature increases from T ′ I towards T ′ o by heat 

conduction from the wall, immediately followed by a region of 

incipient chemical reaction that governs the transition towards a 

persistent slowly reacting mode of combustion for δ ≤ 2 or the 

development of a thermal runaway for δ > 2. Ignition events are 

analyzed to determine the explosion distance for δ > 2, a computa- 

tion that requires consideration of the upstream chemically frozen 

region of temperature accommodation. Specific attention is given 

to near-critical conditions with delayed ignition events. The devel- 

opment includes also an analytic description of the slowly reacting 

mode of combustion established downstream the transition region 

in subcritical configurations with δ ≤ 2. 

2. Formulation 

Consider a gaseous reactant mixture with initial temperature, 

density, and reactant mass fraction T ′ I , ρ
′ 
I , and Y o discharging from 

a storage vessel along a pipe of radius a whose wall temperature 

is kept at a fixed value T ′ o > T ′ I . As in Frank-Kamenetskii’s work [1] , 

our analysis considers an overall Arrhenius reaction, with the mass 

of reactant consumed per unit volume per unit time ˙ m given by 

˙ m /ρ ′ = k (T ′ ) Y r = B exp [ −E/ (RT ′ )] Y r , (1) 

where ρ′ , T ′ , and Y r represent the density, temperature and 

reactant mass fraction. The temperature-dependent reaction-rate 

constant 

k = B exp [ −E/ (RT ′ )] = B exp [ −E/ (RT ′ o )] exp [ β(T ′ − T ′ o ) /T ′ ] , (2) 

includes a frequency factor B and an activation energy E , with 

R denoting the universal gas constant. The characteristic activa- 

tion temperature E / R is assumed to be large compared with the 

wall temperature, resulting in a temperature-sensitive rate con- 

stant that changes from its wall value B exp [ −E/ (RT ′ o )] by a factor 

of order unity when T ′ − T ′ o ∼ RT ′ 2 o /E = T ′ o /β � T ′ o , where RT ′ 2 o /E is 

the so-called FK temperature and β = E/ (RT ′ o ) � 1 is the nondi- 

mensional activation energy. A direct consequence of this strong 

temperature dependence is that, for initially cold mixtures with 

T ′ o − T ′ I ∼ T ′ o , the case considered here, the chemical reaction is ef- 

fectively frozen in the storage vessel. 

In this overall-reaction model the heat-release rate of the reac- 

tion per unit volume is given by q ˙ m , where q denotes the amount 

of heat released per unit mass of reactant consumed. Correspond- 

ingly, the time t e needed for the heat-release rate of the chemi- 

cal reaction—evaluated at T ′ o with the initial reactant mass fraction 

Y o —to increase the enthalpy by an amount c p T 
′ 

o /β, proportional to 

the FK temperature RT ′ 2 o /E, is given by 

t e = 

1 

αβB exp [ −E/ (RT ′ o )] 
, (3) 

where α = (qY o ) / (c p T 
′ 

o ) is the dimensionless temperature rise, 

based on T ′ o , for constant-pressure adiabatic combustion, with c p 
representing the specific heat at constant pressure, taken as con- 

stant for simplicity. In relevant combustion applications the pa- 

rameter α takes values that are of the order of, although typically 

larger than, unity. The chemical time t e defined in (3) can be com- 

pared with the characteristic heat-conduction time across the pipe 

t c = a 2 /D T , (4) 

where D T is the thermal diffusivity evaluated at T ′ o , to define the 

FK parameter 

δ = t c /t e = (a 2 /D T ) αβB exp [ −E/ (RT ′ o )] , (5) 

a Damköhler number characterizing the slowly reacting mode of 

combustion of enclosed reactant mixtures, with the value δ = 2 

identifying the explosion limit in cylindrical vessels [1–3] . 

The discharge is assumed to occur at low Mach numbers, re- 

sulting in spatial pressure differences in the pipe that are small 

compared with the vessel pressure, so that the equation of state 

can be written in the simplified form ρ ′ T ′ = ρ′ 
I T 

′ 
I . A conve- 

nient characteristic value for the streamwise flow velocity U = 

G/ (ρ′ 
o πa 2 ) can be defined from the known mass flow rate G by us- 

ing the density ρ′ 
o = ρ′ 

I T 
′ 

I /T ′ o evaluated at T ′ = T ′ o . This velocity de- 

fines the Peclet number of the pipe flow Pe = Ua/D T , comparable 

in magnitude to the associated Reynolds number Re = Pe / Pr , with 

Pr denoting the order-unity Prandtl number of the gaseous mix- 

ture. The following analysis pertains to configurations with mod- 

erately large values of the Reynolds number Re ∼ Pe in the range 

10 � Re � 20 0 0 , for which the flow in the pipe is stable and slen- 

der, with a characteristic streamwise development length � = Pe a 

much larger than the pipe radius a . The resulting steady lami- 

nar flow can be analyzed in the boundary-layer approximation by 

integrating 

∂ 

∂x 
(ρu ) + 

1 

r 

∂ 

∂r 
(rρv ) = 0 (6) 

ρu 

∂u 

∂x 
+ ρv 

∂u 

∂r 
= −P l (x ) + 

Pr 

r 

∂ 

∂r 

(
rT σ

∂u 

∂r 

)
(7) 

ρu 

∂T 

∂x 
+ ρv 

∂T 

∂r 
= 

1 

r 

∂ 

∂r 

(
rT σ

∂T 

∂r 

)
+ 

δ

β
ρY exp [ β(T − 1) /T ] (8) 

ρu 

∂Y 

∂x 
+ ρv 

∂Y 

∂r 
= 

1 

Le r 

∂ 

∂r 

(
rT σ

∂Y 

∂r 

)
− δ

αβ
ρY exp [ β(T − 1) /T ] 

(9) 

for x > 0 and 0 < r < 1 supplemented with the equation of state 

ρT = 1 (10) 

and subject to the initial conditions 

x = 0 : u − T I = T − T I = Y − 1 = 0 (11) 

at the pipe entrance, and the boundary conditions 

∂u 

∂r 
= v = 

∂T 

∂r 
= 

∂Y 

∂r 
= 0 at r = 0 (12) 

and 

u = v = T − 1 = 

∂Y 

∂r 
= 0 at r = 1 (13) 

for x > 0, as corresponds to axially symmetric flow bounded by a 

non-permeable constant-temperature wall with non-slip flow. 

In the formulation the axial and radial coordinates x ′ and r ′ 
are scaled with � = Pe a and a according to x = x ′ /� and r = r ′ /a, 

while their associated velocity components u ′ and v ′ are scaled 

with U and D T / a to give u = u ′ /U and v = v ′ / (D T /a ) , respectively. 

With the scale selected for the axial velocity, its initial uniform 

value u ′ I = G/ (ρ′ 
I πa 2 ) becomes u ′ I /U = ρ′ 

o /ρ
′ 
I = T I when expressed 

in dimensionless form, as shown in (11) . The reactant mass frac- 

tion Y r is normalized with its initial value Y o to give Y = Y r /Y o , 

and the temperature and density are scaled with T ′ o and ρ′ 
o to 

give the nondimensional variables T = T ′ /T ′ o and ρ = ρ′ /ρ′ 
o . The 

unknown streamwise pressure gradient P l ( x ), to be determined as 
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