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a  b  s  t  r  a  c  t

In  chemical  processes,  determining  the  root  causes  of faults  and  disturbances  is important  for  improving
process  safety  and  economic  profit.  Recently  proposed  convergent  cross-mapping  (CCM)  is suitable  for
both  linear  and  nonlinear  systems.  However,  it cannot  be directly  applied  to chemical  processes.  This is
because  chemical  processes  possess  characteristics,  such  as nonlinearity,  high  dimensions,  continuity,
and  time  delay,  that are  significantly  different  from  ecosystems,  where  CCM  is applicable.  In  this  paper,
we  propose  refined  CCM  (RCCM),  which  integrates  fast embedding  dimension  determinations  with  a
modified  procedure  to improve  the speed  of  the  calculation  and accuracy  of the  analysis.  Examples  show
that  RCCM  fits  chemical  processes  with  the above  characteristics.  In  addition,  it shows  better  performance
than  other  methods  in  finding  the  propagation  paths  of disturbances.

©  2017  Elsevier  Ltd. All  rights  reserved.

1. Introduction

In chemical processes, disturbance propagation paths describe
ways in which disturbance signals consisting of stream flows and
control paths travel through the process. Root-cause identifica-
tion of plant-wide faults and disturbances is important for safe
and efficient operation of chemical processes. However, because
of the process complexity and existence of control loops and
time delays, it is still difficult to determine the correct propa-
gation paths. Several methods have been proposed to solve this
problem. Most of these methods originate from cause-and-effect
analysis approaches and are then utilized to identify the time-
delay relationships between the variables. Among the approaches
to determine the correct propagation paths, the simplest approach
is called cross-correlation analysis (Bauer and Thornhill, 2008). In
this method, different values of the cross-correlation function (CCF)
are obtained at different time delays. The best estimated time delay
and its corresponding cross-correlation are determined by the max-
imum absolute value of the CCF. Although this method is practical
and computationally efficient, it is too simple to identify nonlinear
causal relationships existing in the system. For example, Yang et al.
(2010) found that if y = x2 with a time delay of one sample, where x
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is a superposition of a sine signal and white noise, then the CCF can-
not determine this causality because all of the values are too small
compared with the detecting threshold. In fact, the true correlation
is zero, which means that the CCF cannot find the result. In another
method called the Granger causality (GC) test, variable x “Granger
causes” y if the prediction ability for y decreases when x is removed
from all possible causative variables of y. However, the GC test is
not suitable for coupled systems because it requires that the two
variables for the test should be mutually independent, so the influ-
ence of one variable, such as x, on the other variable, such as y, could
be eliminated by simply removing x from the original system. This
is impossible in a coupled system and the result is trustless when
the separability cannot be satisfied (Sugihara et al., 2012). Schreiber
(2000) proposed the transfer entropy based on the concept of infor-
mation entropy, aiming to pairwise measure the interactions of
variables in a system. The transfer entropy is model-free and it
is widely used in cause-and-effect analysis of chemical processes,
atmospheric science, civil engineering, neuroscience, and other
fields (Bauer et al., 2007; Vicente et al., 2011; Xie et al., 2012; Zhang
et al., 2013). However, because this method is a probability-based
method, the result accuracy is based on estimation of probability
density functions and the whole computational burden is very high.
Furthermore, the transfer entropy cannot always ensure the cor-
rect time-delay relationships between variables, so the arc sign in
signed directed graphs cannot be obtained (Yang et al., 2010). The k-
nearest neighbor (KNN) method proposed by Stockmann and Haber
(2010) uses information about the nearest points that are close to
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input sample points to predict the actual outputs of those input
samples, and it then finds the time-delay peaks by comparing the
predicted and actual values along the time axis. This method is
thought to be faster than the transfer entropy and applicable for
nonlinear systems. However, in the KNN method, the important
imputation number kimp is chosen to be 2, 4, or 6. This subjective
selection cannot always ensure accurate results and it is difficult
to apply in automatic detection. In addition, the KNN method can-
not avoid the false-nearest-neighbor problem in high-dimensional
situations because of the absence of phase-space reconstruction.

For the above methods, the result accuracy and calculation effi-
ciency are two crucial aspects for evaluating their performance.
Most of these methods have shortcomings such as high computa-
tional burden or limited performance for linear or weak nonlinear
systems. These methods cannot ensure correct results for causal-
ity identification of coupled variables in strong nonlinear systems,
while recently proposed convergent cross-mapping (CCM) can
overcome this problem (Sugihara et al., 2012). CCM uses the dif-
feomorphic features of coupled systems and converts the original
causality detecting problem into comparisons between the mutual
prediction effects of embedding manifolds. Recently, Ye et al. (2015)
found that CCM is also capable of distinguishing time-delayed inter-
actions between different process variables. In their method, if
a time delay exists in the effect of an upstream variable y on a
downstream variable x then xt = f(yt−�t). CCM should have the best
detecting performance when two variable series are matched in
accordance with �t. However, in our previous study (Luo et al.,
2016), we found that because of significant differences in the
embedding parameters between variables of continuous chemical
processes, directly applying CCM usually cannot obtain as accurate
results as when CCM is applied to ecosystems, especially when the
process is high-dimensional with complicated dynamic behaviors.

In this paper, we refine the original CCM procedure and apply it
to a chemical process to determine the propagation paths and root
causes of process faults and disturbances. In Section 2, we  intro-
duce the original CCM and its refinement for chemical processes
(RCCM). Compared with CCM, RCCM includes two modifications.
First, it refines the manifold reconstructing process by using the
time lag of the predicted variable to build both of the reconstructed
manifolds, which enables it to be more suitable for variables with
significant differences in time lags, like the situation in chemical
processes where the data is usually from the distributed control
system and each variable fluctuates at different frequencies. In
addition, it integrates fast and accurate parametric determinations
for � and E in the flowchart. This step is important because there are
tens to hundreds of variables in a chemical process, so efficient and
automatic parameter determination procedures will greatly facili-
tate the analysis. At the end of Section 2, we compare RCCM with
original CCM and provide the program flowchart of RCCM. In Sec-
tion 3, we test RCCM on three examples to show its applicability
for chemical processes and its advantages over other well-known
methods. In example 1, we apply RCCM to a continuous stirred tank
reactor to show its applicability for chemical processes. In examples
2 and 3, we test RCCM for four different linear and nonlinear single-
input-single-output (SISO) systems and a benchmark model with
nonlinear subprocesses. In Section 4, we test RCCM on a benchmark
process: the Tennessee Eastman process.

2. CCM and RCCM

CCM was proposed by Sugihara et al. (2012) to determine the
interaction strengths between different variables in a nonlinear
ecosystem. This method is based on diffeomorphism theory and
uses the characteristics of the interactions between coupled vari-

ables of nonlinear systems to provide reliable detection of causal
relationships.

According to the Takens embedding theorem, if two  variables
are causally linked in a dynamic system, their corresponding
shadow manifolds Mx and My would be diffeomorphic to the man-
ifold of the original system M.  Here, Mx and My are reconstructed
using lagged-coordinate embedding of time series x and y with
embedding dimension E and time lags �x and �y. The elements of
Mx and My are denoted as xt and yt. Therefore, there is a consecutive
one-to-one mapping relationship between the points in Mx and My.
For some specific points xt,1, xt,2,. . .,xt,i in Mx, there must be corre-
sponding yt,1, yt,2,. . .,yt,i points in My. If xt,1 converges to a specific
point xt0, yt,i would also converge to the corresponding point yt0 in
My. Thus, once the process data is available, CCM attempts to find
the nearest points for each xt,i in Mx and their mapping points in My
to predict the corresponding value of yt,i, which is denoted as ŷt,i.
The cross-mapping ability of x for y can be evaluated by the correla-
tion coefficient �x→y between {yt} and

{
ŷt

}
. As the sample number

L increases, ŷt,i converges, and so does �y. Thus, x can be used to
estimate y, and vice versa. However, if x and y are not coupled, the
accuracy of the prediction decreases owing to asymmetric infor-
mation exchange between the two observed variables. Note that
the unilateral causality in CCM is counterintuitive compared with
other methods, such as the transfer entropy. A higher value of �x→y

means that the variable x is more affected by y, so y tends to be a
cause of x.

Here, we  describe the mathematical mechanism of CCM. The
variables are produced by an n-dimensional dynamic system:

dX

dt
= f (X, U) (1)

Here, X and U are vectors of the variables and parameters: X = [x1,
x2, . . .,  xn]T and U = [u1, u2, . . .,  ul]T. For example, taking the two
variables x and y of X, each element of the corresponding shadow
manifolds of x and y are constructed according to

Mx,t =
[
xt, xt−�x , xt−2�x , . . .,  xt−(E−1)�x

]
(2)

My,t =
[
yt, yt−�y , yt−2�y , . . .,  yt−(E−1)�y

]
(3)

First, Mx is used to predict My and evaluate the influence of y
on x. If parameter u is stable according to the Takens embedding
theorem, Mx and My would be stable and they are diffeomorphic to
the manifold of the original system M.  This will lead to a consecutive
one-to-one mapping relationship between the points on in Mx and
My:

lim
Mx,i→Mx,k0

My,i → My,k0 = 0 (4)

Thus, if we determine E + 1 points in Mx then

{Mx,ki} = {Mx,k1, Mx,k2, . . .,  Mx,k(E+1)} (5)

which are close to Mx,k0. The value of My,k0 can then be estimated
by {My,ki}:

d(Mx,ki, Mx,k0) = exp

(
− Mx,ki − Mx,k0

Mx,k1 − Mx,k0

)
(6)

M̂y,k0|Mx =
E+1∑
i=1

d(Mx,ki, Mx,k0)∑E+1
j=1 d(Mx,kj, Mx,k0)

My,ki (7)

If L is sufficiently large to ensure that {Mx,ki} is sufficiently close
to My,k0, the predicting ability of Mx for My will converge to a
positive constant between 0 and 1:

lim
L→+∞

cov
(

My, M̂y |Mx

)
= �x→y (8)
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