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a  b  s  t  r  a  c  t

In  the steelmaking  continuous-casting  (SCC)  process,  scheduling  problem  is  a key issue  for  the  iron  and
steel  production.  To  improve  the  productivity  and  reduce  material  consumption,  optimal  models  and
approaches  are  the  most  useful  tools  for production  scheduling  problems.  In this  paper,  we firstly  develop
a  mixed  integer  nonlinear  mathematical  model  for the  SCC  scheduling  problem.  Due to  its  combinatorial
nature  and  complex  practical  constraints,  it is  extremely  difficult  to cope  with  this  problem.  In order
to  obtain  a near-optimal  schedule  in  a reasonable  computational  time,  Lagrangian  relaxation  approach
is  developed  to solve  this  SCC  scheduling  problem  by  relaxing  some  complicated  constraints.  Owing  to
the existence  of  the  nonseparability  coming  from  the  product  of two  binary  variables,  it is still  hard  to
deal  with  this  relaxed  problem.  By making  use  of their  characteristics,  the subproblems  of  the relaxed
problem  can  be converted  into  different  difference  of  convex  (DC)  programming  problems,  which  can  be
solved effectively  by using  the  concave–convex  procedure.  Under  some  reasonable  assumptions,  the  con-
vergence  of  the  concave–convex  procedure  can  be  established.  Furthermore,  we introduce  an  improved
conditional  surrogate  subgradient  algorithm  to solve  the  Lagrangian  dual  (LD)  problem  and  analyze  its
convergence  under  some  appropriate  assumptions.  In addition,  we present  a simple heuristic  algorithm
to  construct  a feasible  schedule  by  adjusting  the  solutions  of  the  relaxed  problem.  Lastly,  some  numerical
results  are  reported  to  illustrate  the efficiency  and  effectiveness  of  the  proposed  method.
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1. Introduction

The iron and steel industry, one of the cornerstone industries,
makes a material contribution to the world economy by providing
raw materials for a number of other important industries, such as,
machinery manufacturing, shipbuilding, petro-chemical and con-
struction industry. Unlike other industries, the process of iron and
steel production runs at high-temperature and high-weight mate-
rial flow with complicated technological processes and extensive
energy consumption (Li et al., 2012). In the iron and steel indus-
try, SCC process plays a significant role, since it is one of the largest
bottlenecks in the manufacturing process. Production scheduling in
the iron and steel industry has been recognized as one of the most
difficult industrial scheduling problems (Harjunkoski and Gross-
mann, 2001). In the SCC process, two main tasks of scheduling
are to determine which orders are allocated to each machine, and
assign the sequence of orders allocated at each stage (Li et al., 2011;
Tang et al., 2000). Due to its combinatorial nature, strict require-
ments on material continuity and complex practical constraints, it
is extremely challenging to solve the scheduling problems of the
SCC process. Optimal scheduling of the SCC process can effectively
improve machine productivity, reduce material and energy con-
sumption and minimize production cost (Li et al., 2016b; Ye et al.,
2014). Therefore, it is critical to develop an effective and efficient
optimization model and approach to cope with the complicated
scheduling problem of the SCC process.

In recent years, most published works on optimization mod-
els and approaches for scheduling problems of the SCC process
can be roughly classified into three categories: mathematical pro-
gramming methods, artificial intelligence methods and heuristic
methods. Using mathematical programming methods, Bellabdaoui
and Teghem (2006) presented a mixed integer mathematical model
for the scheduling of steelmaking continuous casting production,
which can be solved by using some standard software packages.
Harjunkoski and Grossmann (2001) presented a decomposition
algorithm to split the large scheduling problem of steel indus-
try into smaller subproblems that can often be solved optimally
by using mathematical programming methods. Mao  et al. (2014)
modeled the SCC scheduling problem as a mixed-integer linear
programming problem and proposed a novel Lagrangian relax-
ation approach to solve this problem. Mao  et al. (2015) presented
a time-index formulation for the SCC scheduling problem and
developed an effective subgradient method and dynamic pro-
gramming approach to deal with this scheduling problem. Tang
et al. (2002) formulated a novel integer programming formula-
tion with a separable structure for SCC scheduling problem and
developed an improved solution method by combining Lagrangian
relaxation, dynamic programming and heuristics to solve this prob-
lem. Ye et al. (2014) introduced robust optimization and stochastic
programming approaches for addressing a medium-term produc-
tion scheduling of the large-scale steelmaking continuous casting
process under demand uncertainty. With respect to artificial intel-
ligence methods, Atighehchian et al. (2009) investigated a novel
iterative algorithm by combining ant colony optimization and non-
linear optimization methods for scheduling of the SCC production.
Jiang et al. (2015) investigated a mathematic programming model
for the SCC scheduling problem with controllable processing times
and proposed a meta-heuristic algorithm by comparing differential
evolution algorithm with a variable neighborhood decomposition
search to address this problem. Li et al. (2014) formulated a realistic
hybrid flowshop scheduling problem model for steelmaking casting
process and developed an effective fruit fly optimization algorithm
to solve the steelmaking casting problem. Li et al. (2016) proposed
a hybrid fruit fly optimization algorithm and successfully applied
to solve the hybrid flowshop rescheduling problem with flexible
processing time in steelmaking casting systems. Long et al. (2016)

studied a dynamic scheduling model with NP-hard feature for the
SCC scheduling problem under the continuous caster breakdown
and developed a hybrid algorithm featuring a genetic algorithm
combined with a general variable neighbourhood search to solve
this model. Pan (2016) addressed a new SCC scheduling problem
arising from iron and steel production process, modeled this prob-
lem as a combination of two  coupled sub-problems and presented
a novel cooperative co-evolutionary artificial bee colony algorithm
with two sub-swarms to address the sub-problems of this schedul-
ing problem, respectively. Tang and Wang (2010) designed an
improved particle swarm optimization algorithm for the hybrid
flowshop scheduling problem in the integrated production pro-
cess of steelmaking continuous-casting. Tang et al. (2014) studied
an improved differential evolution algorithm to solve a challeng-
ing problem of dynamic scheduling in the SCC production. Zhao
et al. (2011) formulated a mathematical programming model for
the SCC scheduling problem and proposed a tabu search algorithm
to deal with the allocation and sequencing decisions. As for heuris-
tic methods, Missbauer et al. (2009) proposed a mixed integer linear
programming model for the SCC scheduling problem and presented
a three-stage heuristic solution procedure to improve the schedule
by means of a linear programming model. Pacciarelli and Pranzo
(2004) modeled the SCC scheduling problem by means of the alter-
native graph and described a beam search procedure to tackle with
this problem. Yu and Pan (2012) proposed a three-stage reschedul-
ing method including the batches splitting, forward scheduling
method and backward scheduling method for solving a novel multi-
objective nonlinear programming model of the SCC production
process. Yu et al. (2016) considered a job start-time delay issue for
the SCC rescheduling problem and carried out an effective heuris-
tic rescheduling algorithm for the SCC production system to quickly
respond to any disruption with a proper rescheduling plan.

Inspired by the above existing literatures, the motivation and
main contribution of this paper are in following directions. Firstly,
the optimization models for the SCC scheduling problems are
usually described by adopting a big-M strategy (Harjunkoski and
Grossmann, 2001; Jiang et al., 2015; Li et al., 2016a; Long et al.,
2016; Missbauer et al., 2009; Mao  et al., 2014; Pan, 2016; Tang
et al., 2002, 2014; Tang and Wang, 2008; Ye et al., 2014), which
play a significant role in improving the productivity and reducing
the cost of the entire production process. In the big-M strategy,
the main drawbacks are that the computation time will increase
owing to the existence of redundant constraints (Tang et al., 2013;
Vallada and Ruiz, 2011) and the big-M formulation usually pro-
duces much looser lower bound (Mao  et al., 2015). As a result,
we address a new mixed integer nonlinear mathematical model
for the SCC scheduling problem without using the big-M strategy
to avoid above weaknesses. Secondly, in most cases, scheduling
problems of the iron and steel industry are NP-hard, which implies
that no algorithm can optimally solve these problems within a rea-
sonable computation time (Chen and Luh, 2003). In 1988, Gupta
(1988) has proved that the two-stage flowshop problem with
identical multiple machines at each stage is NP-hard and two-
stage flowshop problem is also NP-hard even if the number of
machines at one of the two stage is one. Due to the complex-
ity, the SCC scheduling problem addressed in this paper is much
more complicated than the two  stages flowshop scheduling prob-
lem (Gupta, 1988), which means that the SCC scheduling problem
is also NP-hard. Therefore, the SCC scheduling problem cannot be
solved optimally within the reasonable computation time. Thus,
Lagrangian relaxation approach is introduced to deal with the SCC
scheduling problem, because this approach can provide a lower
bound to evaluate the optimality of solutions and yield a near-
optimal schedule in a reasonable computational time (Nishi and
Hiranaka, 2013). Up to now, published works on the Lagrangian
relaxation approaches have mainly focused on relaxing the compli-
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