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a  b  s  t  r  a  c  t

A  novel  dynamic  optimization  framework  is  presented  for integration  of  design,  control,  and  scheduling
for  multi-product  processes  in  the  presence  of disturbances  and  parameter  uncertainty.  This  framework
proposes  an  iterative  algorithm  that  decomposes  the  overall  problem  into  flexibility  and  feasibility  anal-
yses.  The  flexibility  problem  is solved  under  a critical  (worst-case)  set  of  disturbance  and  uncertainty
realizations,  whereas  the feasibility  problem  evaluates  the  dynamic  feasibility  of  each  realization,  and
updates  the critical  set  accordingly.  The  algorithm  terminates  when  a robust  solution  is found,  which
is  feasible  under  all  identified  scenarios.  To  account  for  the  importance  of grade  transitions  in  multi-
product  processes,  the  proposed  framework  integrates  scheduling  into  the  dynamic  model  by the  use
of  flexible  finite  elements.  This  framework  is applied  to  a  multi-product  continuous  stirred-tank  reac-
tor  (CSTR)  system  subject  to disturbance  and  parameter  uncertainty.  The  proposed  method  is shown
to  return  robust  solutions  that  are  of  higher  quality  than the  traditional  sequential  method.  The  results
indicate  that  scheduling  decisions  are  affected  by  design  and  control  decisions,  thus  motivating  the  need
for integration  of these  three  aspects.

©  2017  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Multiproduct processes are widely used in different sectors due
to their versatility and convenience, e.g. oil & gas (Harjunkoski
et al., 2009), pharmaceutical (Nie and Biegler, 2012), and poly-
mer  production (Harjunkoski et al., 2009; Terrazas-Moreno et al.,
2008). To remain competitive, companies are required to oper-
ate their systems at nearby optimal conditions that can efficiently
produce their products under environmental, safety and product
specification constraints. Most major chemical companies have
invested in large computing networks that are dedicated to solving
large-scale process optimization problems (Seferlis and Georgiadis,
2004). Obtaining a solution for design, control, and scheduling can
be quite challenging, as the problems are typically very large, and
there are many aspects to a process which can impact the process
economics. There are multiple approaches for obtaining solutions,
each of which vary in solution quality and computational time.

The simplest approach to address optimal process design,
scheduling and control for large process networks is the sequential
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approach, where the design, control, and scheduling of the sys-
tem are all considered separately (Patil et al., 2015; Zhuge and
Ierapetritou, 2012). This approach is popular in many industries
(Mohideen et al., 1996) because solutions can be obtained very
quickly, due to independence of the sub-problems. Although the
sequential method is fast, there are many limitations. Since each
sub-problem is solved independently, the interactions between
design, control, and scheduling are typically neglected, even
though it has been recognized that these interactions can be sig-
nificant (Flores-Tlacuahuac and Grossmann, 2011; Pistikopoulos
and Diangelakis, 2015; Zhuge and Ierapetritou, 2012). Further-
more, assumptions need to be made in each sub-problem, e.g.
steady-state operation or adding overdesign factors, and these
assumptions may  be invalid or return expensive plant designs.
Hence, the solution generated by the sequential approach is likely
to be suboptimal, and may  become dynamically infeasible in some
cases leading to the specification of invalid designs and scheduling
sequences (Chu and You, 2014a). These limitations have motivated
the development of a more reliable and robust method of deter-
mining design, control, and scheduling.

The simultaneous approach is a more advanced method of
integrated optimization. In this approach, the design, control,
and scheduling are optimized simultaneously, for the purpose of
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Nomenclature

Indices
g Index of product grades (1, 2, . . .,  G)
i Index of production/transition regions in time

(1, 2, . . .,  I)
j Index of finite elements in time (1, 2, . . .,  J)
k Index of collocation points in time (1, 2, . . .,  K)
ω Index of realizations for process disturbances

(1, 2, . . .,  N)
� Index of realizations for parameter uncertainty

(1, 2, . . .,  M)
a Index of inequality constraints
n Iteration number of decomposition algorithm

Parameters
I Number of regions in time
J Number of finite elements in each region in time
K Number of collocation points in each finite element
N Number of realizations for process disturbances
M Number of realizations for parameter uncertainty
A  Matrix of orthogonal collocation weights
f Vector function of closed loop non-linear process

model equations
g Vector function of inequality constraints
h Vector function of equality constraints
� Infeasibility of inequality constraints g at each point

in time
˚n Maximum infeasibility in iteration n
  Function to map  the production sequence to a set-

point profile
��,ω Weight or probability of occurrence for realization(

�, ω
)

t Time

Variables
�ti Length of time region i
ıti Length of every finite element in time region i
x (t) Vector of process states at time t
u (t) Vector of process inputs at time t
y (t) Vector of process outputs at time t
ysp (t) Vector of process output set-points at time t
xijk Vector of process states in region i, finite element j,

and collocation point k
x�,ω

ijk
Vector of process states in region i, finite element
j, and collocation point k, corresponding to realiza-
tion

(
�, ω

)
of process disturbance and parameter

uncertainty
u�,ω

ijk
Vector of process inputs in region i, finite element
j, and collocation point k, corresponding to realiza-
tion

(
�, ω

)
of process disturbance and parameter

uncertainty
y�,ω

ijk
Vector of process outputs in region i, finite element
j, and collocation point k, corresponding to realiza-
tion

(
�, ω

)
of process disturbance and parameter

uncertainty
(ysp)ijk Vector of process output set-points in region i, finite

element j, and collocation point k
z Objective variable
� Vector of design decisions
� Vector of control decisions
B Binary matrix for sequence scheduling
� Vector of process disturbances
P Vector of uncertain parameters

D  Vector of all design, control, and scheduling deci-
sions

{
�, �, B, �t

}
c Set of critical realizations of process disturbance and

parameter uncertainty
 ̌ List of process set-points, in order of production

Ysp List of process output set-points, unordered

considering interactions. This approach has the potential to
provide attractive solutions, which are more optimal and reliable
(Chu and You, 2014b; Mendez et al., 2006; Nie et al., 2015; Patil
et al., 2015). While several studies have considered integration
of design and control (Ricardez-Sandoval et al., 2009; Sakizlis
et al., 2004; Yuan et al., 2012), integration of scheduling has
not been deeply explored. In the case of multi-product plants, it
can be advantageous to account for scheduling decisions at the
design stage since it dictates the dynamic transitions between
the different products to be produced, which in turn, depend on
design and control (Bhatia and Biegler, 1996; Flores-Tlacuahuac
and Grossmann, 2011; Pistikopoulos and Diangelakis, 2015).
For large-scale problems, the simultaneous approach has a high
computational cost due to the large number of variables involved,
including the integer variables considered in the scheduling for-
mulation. The problem can be complicated further by considering
dynamic evolution of the system subject to process disturbances
and uncertainty in the model parameters. Solving the simultane-
ous problem explicitly is challenging due to the reasons described
above; therefore, decomposition algorithms that account for
different aspects of the integration of design, control and/or
scheduling have been proposed to arrive at economically attrac-
tive solutions (Chu and You, 2013; Heo et al., 2003; Mohideen et al.,
1996; Sanchez-Sanchez and Ricardez-Sandoval, 2013; Seferlis and
Georgiadis, 2004; Zhuge and Ierapetritou, 2016). Currently, there
is no commercial software which is specifically designed to solve
these types of problems (Pistikopoulos and Diangelakis, 2015).

Typically, the decomposition algorithm consists of two sub-
problems: a flexibility analysis and a feasibility analysis (Sakizlis
et al., 2004; Sanchez-Sanchez and Ricardez-Sandoval, 2013; Seferlis
and Georgiadis, 2004). In the flexibility sub-problem, a solution is
chosen such that total cost is minimized and all constraints are
satisfied, subject to a critical set of process disturbances and param-
eter uncertainty. In the feasibility sub-problem, the solution from
the flexibility sub-problem is tested for feasibility at all realizations
of disturbance and uncertainty. If the solution is determined to be
invalid (i.e. infeasible for one or more realizations), the critical set is
updated, and the algorithm returns to the flexibility problem. The
algorithm terminates when all realizations are feasible at the given
solution.

As shown in Table 1, previous publications typically focus
on either design and control, design and scheduling, or control
and scheduling. Due to problem complexity, few publications
address the integration of design, control, and scheduling. In
one of the first studies, the design, control, and scheduling
of a methyl-methacrylate process are optimized simultaneously
(Terrazas-Moreno et al., 2008). The scheduling decisions include
production order and transition times, which account for process
dynamics. The formulation includes uncertainty, as values that are
selected from a discrete set. Process disturbances were not con-
sidered. In lieu of a closed-loop control scheme, the profile of the
manipulated variable was directly obtained from dynamic opti-
mization. In another study (Patil et al., 2015), the integration was
applied to multiproduct processes under disturbance and uncer-
tainty. Decisions were made on equipment sizing, steady-state
operating conditions, control tuning, production sequence, and
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