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a  b  s  t  r  a  c  t

As  a well-known  approximation  method,  Kriging  is widely  used  in  process  engineering  design  and  opti-
mization  for  saving  computational  budget.  The  Kriging  model  for  a target  function  is fitted  to a  set of
sample  points,  the  responses  of which  are  expensive  to obtain  in  practice  and  the  sample  distribution  of
which  has  a  great  impact  on the  model  prediction  quality.  Therefore,  a main  task  in adaptive  sampling
for  Kriging  metamodeling  is to gather  informative  points  in order  to  build  an  accurate  model  with  as
few  points  as  possible.  To  this  end,  we  propose  an  adaptive  sampling  approach  under  the  bias-variance
decomposition  framework.  This  novel  sampling  approach  sequentially  selects  new  points  by  maximizing
an expected  prediction  error  criterion  that  considers  both  the bias  and  variance  information.  Particularly,
it presents  an  adaptive  balance  strategy  to dynamically  balance  the  local  exploitation  and  global  explo-
ration via  the  error  information  from  the previous  iteration.  Four  benchmark  cases  and  four  engineering
cases  from  low  to high  dimensions  are  used  to  assess  the performance  of the  proposed  approach.  Numeri-
cal  results  reveal  that  this  adaptive  sampling  approach  is  very  promising  for constructing  accurate  Kriging
models  for  problems  with  diverse  characteristics.

© 2017  Elsevier  Ltd. All  rights  reserved.

1. Introduction

As a statistical model, the Kriging metamodeling technique, also
known as Gaussian process regression (GPR), has been extensively
used in engineering design and optimization for relieving com-
putational budget. For an expensive simulation-based function,
Kriging can fit a mathematical model to a finite number of observed
points as an approximation. The cheap-to-run Kriging model helps
enhance the understanding of the target function by exploring the
design space. Some variants of Kriging, e.g., co-Kriging (Kennedy
and O’Hagan, 2000), blind-Kriging (Joseph et al., 2008), gradient-
enhanced Kriging (Morris et al., 1993), and non-stationary Kriging
(Xiong et al., 2007), have been developed for different purposes.

Given an expensive target function f ∈ R1, the general Kriging
metamodeling process consists of two parts: (1) generating a set
of observed points by the design of experiments (DoE) techniques;
and (2) fitting a Kriging model f̂ to the observed data. It is found
that the sample positions distinctly affect the prediction quality of
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Kriging. Considering the limited computational budget in practice,
a key issue in Kriging metamodeling is how to gather informative
points in order to build an accurate model with as few points as
possible.

Suppose that we already have a set of initial points XD in the
domain D ∈ Rn, and maintain a large pool of candidate points
U = D \ XD. The main task of a sampling approach is to sequentially
select informative points from U and evaluate their responses in
order to efficiently refine the Kriging model. Recently, the adaptive
sampling strategy, also known as active learning (Settles, 2010), has
gained increasing attention. This sampling strategy sequentially
selects new points based on the information of both the approxi-
mation model and the data itself from previous iterations. Recently,
there have emerged various adaptive sampling strategies for global
metamodeling (Mackman and Allen, 2010; Xu et al., 2014; Eason
and Cremaschi, 2014; Garud et al., 2017; Wang and Ierapetritou,
2017). This article mainly focuses on the adaptive sampling devel-
oped under the Bayesian framework for Kriging metamodeling.

It is known that because of the Bayesian framework, the Kriging
model provides not only the prediction response f̂  (x) but also the
prediction variance s2(x) (also known as mean square error, MSE)
at an arbitrary point x. Therefore, a straightforward adaptive sam-
pling strategy for Kriging is to sequentially select a new point with
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maximal prediction variance, denoted as maximum mean square
error (MMSE) (Jin et al., 2002), in order to reduce the generaliza-
tion error of f̂  . The MMSE  sampling approach is widely used due
to the ease of implementation and the cost-efficient process. Based
on Shannon’s entropy theory, Shewry and Wynn (1987) proposed
the maximum entropy (ME) criterion to select new points by max-
imizing the determinant of the correlation matrix. Particularly, the
one-by-one ME  approach is equivalent to the MMSE  approach (Jin
et al., 2002). To further improve the sampling performance, Morris
et al. (1993) combined the maximum entropy sampling approach
with the known first derivatives. Besides, under the expected error
reduction framework, Sacks et al. (1989) selected new points by
maximizing the expected reduction in integrated mean square
error (IMSE) over the entire design space, which is equivalent to
the active learning-Cohn (ALC) criterion (Cohn, 1996; Christen et al.,
2011). However, due to the integral operation, the computational
complexity of IMSE is much higher than that of MSE. A recent work
(Beck and Guillas, 2016) suggested using the mutual information
to adaptively select new points by maximizing the expected infor-
mation gain.

The points generated by the above variance-based sampling
approaches are found to primarily fill the domain evenly and have
a slight adaption to the variability along each coordinate direc-
tion. This is because that they consider only the Kriging variance
information that follows a stationary assumption wherein the cor-
relation function is identical over the entire domain. As a result,
the prediction variance solely depends on the sample locations. For
effectively improving the model accuracy within limited computa-
tional budget, rather than fill the domain evenly, an interesting idea
is to determine the sample positions according to the characteris-
tics of target function, e.g., sampling more points in regions with
large prediction errors.

To this end, Lin et al. (2004) used the prediction errors estimated
by additional validation points to adjust the correlation matrix so
that the correlation function is no longer identical over the domain.
That is, it owns the ability to adapt to the function characteristics,
which thereafter helps the sampling approach identify regions with
large prediction errors. The validation points, however, are usu-
ally unavailable in practice. In a similar spirit, Farhang-Mehr and
Azarm (2005) employed the locations of local optima on current
Kriging model to adjust the correlation matrix in order to identify
irregular regions. This adaptive sampling criterion heavily depends
on the quality of the Kriging model. A poor model may  guide an
erroneous sampling direction. Recently, Liu et al. (2016a) proposed
an adaptive maximum entropy (AME) sampling approach by using
the cross-validation errors to adjust the correlation function, and
moreover, employing a user-defined search pattern to circularly
conduct sampling from global to local. Busby (2009) and Busby
et al. (2007) decomposed the domain into cells with the edges
being of the order of correlation lengths along different directions.
Then, they adopted the cross-validation criterion and ME  criterion
to identify “bad cells” for sampling. Besides, Lam (2008) modified
the expected improvement criterion developed for global optimiza-
tion (Jones et al., 1998) to obtain a good global model fit. The
expected improvement for global fit (EIGF) approach selects infor-
mative points that have a large expected improvement over the
nearest observed points.

As has been pointed out by Liu et al. (2016a) and Deschrijver et al.
(2011), an effective adaptive sampling approach should contain
three parts:

(1) Local exploitation. This part accounts for the adaption of the
sampling process by guiding the sampling in regions with large
prediction errors. The local exploitation term can be repre-
sented in various ways, e.g., the prediction errors at validation
points (Lin et al., 2004), the cross-validation errors (Jin et al.,

Fig. 1. Illustration of a Kriging model with linear regressions.

2002; Liu et al., 2016a; Busby et al., 2007), the locations of local
optima (Farhang-Mehr and Azarm, 2005), the local response
variation (Lam, 2008) and more others.

(2) Global exploration. This part ensures the purpose of global meta-
modeling, and avoids the missing of undetected interesting
regions by employing, e.g., some distance-based criteria (Jin
et al., 2002).

(3) Trade-off between local & global.  Last but not least, this part
balances the local exploitation and global exploration, and has
a great impact on the sampling performance. Most of current
adaptive sampling approaches for Kriging, however, usually use
a fixed balance rule, which is non-beneficial for sampling per-
formance. Liu et al. (2016a) introduced a user-defined search
pattern to balance the local exploitation and global exploration,
but it is still inflexible. For NURBs-based metamodeling, Turner
et al. (2007) proposed using two  pure global criteria and two
pure local criteria to formulate a cooling schedule wherein the
Bernstein basis functions are adopted to decide the dominant
criterion in different sampling stages. Singh et al. (2013) illus-
trated three conceptual balance strategies and recommended
the adaptive balance strategy.

This article derives an adaptive sampling approach for Kriging
metamodeling under the bias-variance decomposition framework.
The proposed approach sequentially selects the most informative
points through maximizing the expected prediction error criterion
that considers both the bias and variance information. Besides, it
presents a novel adaptive balance strategy to gain benefits from
effective local exploitation, while not hurting the performance
through dynamically balancing the local exploitation and global
exploration via the error information from the previous iteration.

The remaining of the article is organized as follows. Section 2
gives a brief introduction of the Kriging model. Section 3 describes
the proposed adaptive sampling approach via maximizing expected
prediction error. Thereafter, four benchmark cases and four engi-
neering cases from low to high dimensions are employed in Section
4 to assess the sampling performance. Finally, Section 5 offers some
concluding remarks.

2. Kriging model

Kriging was first introduced in the field of geology to esti-
mate the properties of sampled minerals given a set of sampled
sites (Journel and Huijbregts, 1978). Thereafter, Sacks et al. (1989)
applied Kriging in the context of design and analysis of computer
experiments (DACE), the meaning of which now has been extended
to refer to the suite of all metamodeling techniques (Viana et al.,
2014).

In the Kriging framework, the main assumption is that the deter-
ministic output f(x) is regarded as the realization of a stochastic
process yK(x). As shown in Fig. 1, Kriging is composed of a global
polynomial model, called trend model,  over the entire domain and
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