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a  b  s  t  r  a  c  t

A  new  method  is  proposed  for the  steady-state  optimization  of  biochemical  systems  described  by  Gen-
eralized  Mass  Action  (GMA)  models.  In  this  method,  a bi-level  programming  with  a  two-layer  nested
structure  is  established.  In this  bi-level  problem,  the  upper-level  objective  is to  maximize  a  flux  or  a
metabolite  concentration,  and  the  lower-level  objective  is  to minimize  the  total  sum  of  metabolite  con-
centrations  of biochemical  systems.  The  biological  significance  of  the  presented  bi-level  programming
problem  is  to maximize  the production  rate  or concentration  of  the  desired  product  under  a  minimal
metabolic  cost  to the  biochemical  system.  To  efficiently  solve  the  above  NP-hard,  non-convex  and  non-
linear bi-level  programming  problem,  we  reformulate  it into  a single-level  optimization  problem  by  using
appropriate  transformation  strategies.  The  proposed  framework  is applied  to four  case  studies  and  has
shown  the  tractability  and  effectiveness  of  the  method.  A  comparison  of our  proposed  method  and  other
methods  is also  given.

© 2017  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Mathematical optimization plays a key role in the establishment
of rational strategies for the yield improvement of biochemical
systems. In the last decades, much research has been directed
towards the development of model-based optimization strategies
for biochemical systems (Voit, 1992; Torres et al., 1996, 1997;
Hatzimanikatis et al., 1996; Marín-Sanguino and Torres, 2000,
2003; Torres and Voit, 2002; Chang and Sahinidis, 2005; Marín-
Sanguino et al., 2007; Polisetty et al., 2008; Xu et al., 2008, 2015;
Pozo et al., 2010, 2011, 2015; Sorribas et al., 2010; Vera et al.,
2010; Xu, 2012, 2013; Zomorrodi et al., 2012; Hsu and Wang, 2013;
Xu and Wang, 2014). For example, Hatzimanikatis et al. (1996)
used mixed-integer linear programming to analyze and design the
metabolic reaction networks of biochemical systems. Pozo et al.
(2010) proposed an outer-approximation algorithm to optimize a
biochemical system. Zomorrodi et al. (2012) reviewed a number of
optimization-based frameworks developed towards dealing with
some challenges in the analysis and engineering for metabolic net-
works of biochemical systems. Hsu and Wang (2013) developed
an approach named fuzzy equal metabolic adjustment to formu-
late an optimal enzyme target design problem for drug discovery.
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Pozo et al. (2015) addressed the global optimization of hybrid
kinetic/FBA models via an outer-approximation method.

In the modeling framework called Biochemical Systems Theory
(BST) (Savageau 1969a,b, 1970, 1976; Savageau et al., 1987a,b; Voit,
2000), some methods have been proposed to address the steady-
state optimization of biochemical systems (Voit, 1992; Torres
et al., 1996, 1997; Marín-Sanguino and Torres, 2000, 2003; Marín-
Sanguino et al., 2007; Xu et al., 2008; Vera et al., 2010; Xu, 2013; Xu
and Wang, 2014). For example, Voit (1992) and Torres et al. (1996,
1997) proposed an approach called Indirect Optimization Method
(IOM) to solve the steady-state optimization problem of biochem-
ical systems. The advantage of the IOM approach is that one can
use a linear programming technique to obtain an optimal steady-
state of a biochemical system through the S-system representation
and logarithmic transformation. Marín-Sanguino and Torres (2000)
used an iterative version of the IOM approach to decrease the dif-
ference between the S-system and IOM solutions. Xu et al. (2008)
proposed a modified iterative IOM algorithm to attain the globally
consistent S-system and IOM solutions by iteratively changing the
reference steady-state of the biochemical system under considera-
tion. Marín-Sanguino and Torres (2003) presented a method called
GMA-IOM for steady-state optimization of biochemical systems
by GMA  model representations and linear programming. Marín-
Sanguino et al. (2007) and Vera et al. (2010) used controlled error
and penalty treatment methods to solve the geometric program-
ming problem generated from biochemical systems described by
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the GMA  model. These two approaches possibly cannot yield the
globally optimal solution of geometric programming with a GMA
system (Xu, 2013). To address this issue, an iterative method for the
steady-state optimization of biochemical systems was proposed by
Xu (2013). Xu and Wang (2014) presented an improved version to
enhance the computational efficiency of the Xu (2013) method.

In the study of the steady-state optimization of a biochemical
system, one should not only maximize the production rate or con-
centration of the final product but also optimize its metabolic cost.
This is because an abnormally high concentration of intermediate
metabolite would cause the biochemical system non-viable, with
the burden on the cellular metabolism being too high for the cell
to survive (Voit, 2000; Torres and Voit, 2002). Several researchers
have used the criteria of minimizing the intermediate metabolite
concentrations or their sum to reduce the metabolic cost of bio-
chemical systems (Schuster and Heinrich, 1991; Alvarez-Vasquez
et al., 2000; Torres and Voit, 2002). Moreover, a biochemical sys-
tem has a self-optimization feature for metabolic cost to manage
and limit the cell’s biosynthetic investments in metabolic material
and energy (Torres and Voit, 2002). Therefore, it will be more bio-
logically significant if we can consider and resolve the problem of
maximizing the production rate or concentration of desired prod-
uct under the condition of minimal metabolic cost. For this purpose,
we propose a bi-level programming framework for the steady-state
optimization of biochemical systems. Bi-level programming is a
special form of optimization problems where an optimization prob-
lem is embedded within another one (Vicente and Calamai, 1994;
Bard, 1998; Dempe, 2002; Dempe et al., 2006; Colson et al., 2007;
Domínguez and Pistikopoulos, 2010). The outer optimization task is
commonly referred to as the upper-level optimization task, and the
inner optimization task is commonly referred to as the lower-level
optimization task. A general formulation of bi-level programming
problems is written as (Dempe, 2002; Sahin and Ciric, 1998; Colson
et al., 2007):

min
zU,zL

FU
(
zU, zL

)

s.t. GU
(
zU, zL

)
≤ 0

HU(zU, zL) = 0

min
zL

FL(zU, zL)

s.t. GL(zU, zL) ≤ 0

HL(zU, zL) = 0

where zU ∈ Rn1 and zL ∈ Rn2 are the decision variables. The func-
tions FU(zU, zL) ∈ R, GU(zU, zL) ∈ Rm1 and HU(zU, zL) ∈ Rp1 are the
objective function, inequality and equality constraints of the upper-
level problem, respectively. The functions FL(zU, zL) ∈ R, GL(zU, zL) ∈
Rm2 and HL(zU, zL) ∈ Rp2 are the objective function, inequality and
equality constraints of the lower-level problem, respectively. From
the mathematical point of view, bi-level programming problems
are complicated optimization problems due to the following three
aspects (Dempe, 2002): (1) they are intrinsically NP-hard; (2) their
nested structure has inherent difficulties even with respect to the
notion of a solution; (3) for many methods regularity conditions
cannot be satisfied at any feasible point. These features of bi-level
programming problems make them very difficult to globally solve.
In recent years, considerable research has sought to address the
solution strategies of bi-level programming problems (Domínguez
and Pistikopoulos, 2010; Bosco and Etoa, 2011; Allende and Still,
2013; Kuo et al., 2015; Adasme and Lisser, 2016; Paulavičius et al.,

2016; Sinha et al., 2017) and their applications to some processes
(Ryu et al., 2004; Cecchini et al., 2013; Yeh et al., 2015; Robbins and
Lunday, 2016; Saranwong and Likasiri, 2016, 2017).

In our proposed bi-level programming framework, we propose
a bi-level programming problem whose upper-level and lower-
level objectives are, respectively, to maximize a flux or a particular
metabolite concentration and to minimize the total sum of metabo-
lite concentrations of biochemical systems. A solver is proposed
to efficiently solve the presented NP-hard and non-convex bi-level
programming problem by transforming it into a simple single-level
optimization problem. We  illustrate the capabilities of the pro-
posed framework through the steady-state optimization of four
biochemical systems, comparing our results with those obtained
by other single-level methods.

This paper is organized as follows. Section 2 presents the bi-
level programming problem for the steady-state optimization of
biochemical systems described by GMA  representations. Section
3 develops a method to solve the proposed bi-level programming
problem. In Section 4, four case studies are presented. Finally, brief
conclusions are given in Section 5.

2. Bi-level programming problem for the steady-state
optimization of biochemical systems

2.1. The GMA formalism

A biochemical system can be modeled as the following mathe-
matical form:

dXi
dt

=
p∑
j=1

�ijVj, i = 1, 2, · · ·,  n (1)

where Xi are the metabolite concentrations, Vj denote the reaction
rates, and the parameters �ij ∈ R are the stoichiometric coefficients
of the metabolite concentrations Xi in the reactions Vj. The reaction
rates Vj can be expressed as the following mathematical functions:

Vj = Uj(X), j = 1, 2, · · ·,  p (2)

where X = (X1, X2, · · · , Xn+m)T ∈ Rn+m and Xk (k = n + 1, n + 2, · · · , n + m)
are the m external metabolites (enzyme activities, fixed extracel-
lular concentrations, kinetic parameters).

In the GMA  version of a biochemical system, the rate expres-
sion functions Uj(X) in Eq. (2) adopt the following power-law form
(Savageau 1969a,b; Voit, 2000):

Uj(X) = �j

n+m∏
k=1

Xgjkk , j = 1, 2, · · ·,  p (3)

In this representation, the model parameters � j > 0 are the rate
constants for the reaction rates Vj, and gjk ∈ R are the kinetic orders
that reflect the direct effects of system variables Xk on reaction rates
Vj. The model parameters � j and gjk can be defined respectively as
(Savageau 1969a,b, 1976; Voit, 2000):

�j =
(
Vj
)

0

n+m∏
k=1

(Xk)
−gjk
0 (4)

gjk =
(
∂Vj
∂Xk

Xk
Vj

)
0

(5)

where the subscript 0 indicates that the results are calculated at
the steady-state of metabolite concentrations Xi (i = 1, 2, · · · , n).
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