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a  b  s  t  r  a  c  t

Waterflooding  is the  use  of water  injection  to enhance  the  oil  recovery  in  mature  oil  reservoirs.  In  this
paper  an  adaptive  algorithm  has  been  introduced  for waterflooding  management  in oil  reservoirs  based
on proxy  modeling  technique.  The  presented  approach  is  capable  to handle  the  time-varying  nature
and  the inherent  nonlinearity  of  the  complex  process.  In  addition,  any  variation  either  in market  prices
or  in  operational  costs  is  compensated  by the designed  adaptive  controller  to  fix  the  obtained  profit
(here,  the  net  present  value:  npv)  at a desired  achievable  value.  The  observed  outcomes  on 10th  SPE-
Model#2  benchmark  case  study  have  shown  that  by using  this  algorithm,  any  feasible  desired  trajectory
for  the  expected  benefit  can  be satisfied  during  the  waterflooding-based  production.  Since  the  suggested
controller  has  adaptive  structure,  it can be  re-adjusted  continuously  in each  time-step,  using  available
operational  data,  to take into  account  the  reservoir  dynamical  variations  as well  as  the  external  dis-
turbances  to  present  an  acceptable  performance.  By  including  a  monitoring  module  in the algorithm
structure  based  on data  fusion  technique,  the  updated  profitability/productivity  status  of  the  reservoir
is  estimated.  By  using  this  information  the  npv setpoint  induced  to  the  closed-loop  system  can  be auto-
matically  re-adjusted  such  that  it always  remains  in an  acceptable  and  reasonable  range.  In  conclusion,
the  proposed  methodology  is  an  applicable  solution  for fairly  profit-sharing  in  different  kinds  of con-
tracts.  In  other  words,  the  gained  profit  can  be appropriately  allocated  to  the shareholders  according  to
the  contractual  obligations  or a defined  npv  trajectory  while  considering  the  current  condition  of  the
reservoir.  This  strategy  helps  to  prevent  from  ultra-production  in  a specific  period  of  time  by  the clients
or  contractors  which  may  lead  to  an  unexpected  reduction  in the  share  of  other  parties  in the  reservoir
life-cycle.

©  2017  Elsevier  Ltd. All  rights  reserved.

1. Introduction

For reducing the gap between demand and sources of
hydrocarbon-based energy, an effective solution is increasing the
oil recovery factor in existing reservoirs. The average recovery
factor may  disappointingly come down to about 15% in complex
reservoirs (Sarma, 2006; Golder Associates, 2000). However; by
using secondary production approaches such as waterflooding- in
which water is injected into the reservoir for conducting the oil
toward production wells for more efficiency- up to 70% of the
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hydrocarbon can be recovered theoretically (van den Hof et al.,
2009). So, different aspects of waterflooding modeling, control and
optimization studies, have recently attracted much attention by
the researchers (Sarma et al., 2006; Shirangi and Durlofsky, 2015;
Grema and Cao, 2016; Sorek et al., 2017).

Although hydrocarbon production is a complex large-scale
dynamical process, the operators in the fields mostly manage it just
based on their own  experiences. Fortunately, widespread applica-
tions of advanced instrument and control devices have increased
the opportunity to optimize the oil production using model-based
control and optimization techniques (Jansen et al., 2008). Nowa-
days, intelligent reservoirs are generally equipped with appropriate
sensors and actuators to monitor the wells and reservoir condi-
tions as well as to control the fluids flow of the producing and
injecting wells. It has been perceived that applying advanced mon-
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itoring and control systems in reservoirs can significantly increase
the hydrocarbon recovery (Glandt, 2005).

Closed-loop reservoir management (CLRM) is a popular
methodology, which take into account the reservoir observed data
as well as the information obtained from model-based simulations,
to design the suitable optimal control strategies (Foss, 2012). Gen-
erally, the manipulated variables in a reservoir are bottom-hole
pressures (bhp) or flow-rates of the wells, and the ultimate goal
in CLRM is to maximize an objective function which is usually
selected as the net present value (npv) of the recovery process
subject to the operational constraints. In other words, optimiza-
tion in oil reservoirs can be performed by adjusting optimum
injection and production rate settings for maximizing the npv
as a well-known profitability index. In model-based optimization
approaches which use open-loop configuration, the reservoir mod-
els are supposed to be perfect in presenting all existing dynamics
of the system (Asadollahi and Naevdal, 2009). Consequently, open-
loop techniques, such as dynamic optimization, suffer from loss
of robustness against uncertainties and may  deduce suboptimal or
even non-optimal results (Brouwer and Jansen, 2004). On the other
hand, robust optimization techniques, which use a set of reservoir
realizations for considering different types of probable geological
models, have been introduced to cope with the uncertainties (van
Essen et al., 2009). However, these methods’ principle assump-
tion, which is all existing reservoir characteristics and production
behaviors are presented by the developed realizations, is somehow
unrealistic (Grema and Cao, 2016). That is to say, the set of various
realizations may  not be completely successful to reflect the real
reservoir dynamic which is needed for an efficient optimization
process.

From another point of view, in model-based dynamic reser-
voir optimization using direct methods, it is possible to define the
optimal control problem in the framework of nonlinear program-
ming (NLP) (Binder et al., 2001). In this methodology, the optimizer
seeks for the solution sequentially. It means that a control profile
is computed at each step and then the obtained profile is sim-
ulated for investigating the results. This sequential-optimization
process is generally known as single shooting (SS) (Jansen, 2011).
For instance, generalized reduced gradient (Kraaijevanger et al.,
2007), and augmented Lagrangian (Chen et al., 2010) are common
gradient-based methods for dealing with NLP’s, specially applied
in reservoir optimization. In these techniques, gradients of the
objective and function evaluations should be computed. In addi-
tion, existence of operational constraints forces some limitations
on bhp’s and flow-rates of the wells. Function evaluations is the
technical term for presenting the dynamic behavior of the reservoir
and can be achieved using valid simulators. Furthermore, objec-
tive gradient can be calculated via adjoint techniques. However,
existence of nonlinear constraints can dictate additional adjoint
simulations and increase the computational load of such tech-
niques. As a result, methods to lump reservoir output constraints,
such as limitation on the volume of the produced water, into a sin-
gle constraint have been developed to evade from extra adjoint
computations (Suwartadi et al., 2011; Kourounis et al., 2014).
Nevertheless, these approaches may  induce extra approximations
as well as parameters retuning. To handle the mentioned prob-
lem related to the output constraints, direct method for dynamic
optimization in oil reservoirs based on multiple shooting (MS) tech-
nique, has been proposed in (Codas et al., 2015). But, applying this
approach requires an intense interaction between optimizer and
simulator, which causes to a huge computational load. In addition,
to achieve an efficient MS  implementation, parallel-computing
facilities and extensive-memory should be available. Moreover,
several research on reservoir optimization and production man-
agement based on proper orthogonal decomposition (van Doren
et al., 2006) and trajectory piecewise linearization (Cardoso and

Durlofsky, 2010; Gunnerud and Foss, 2010) have tried to develop
methods in which the search-space and also memory requirements
decrease.

Obviously, all model-based approaches applicable for the
production management in the hydrocarbon reservoirs require
accurate reservoir models. A real reservoir can expose totally differ-
ent behaviors compared to the assumed models. As a result, by just
relying on the outcomes of cumbersome model-based optimization
techniques, which have been validated in simulation mode while
ignoring the real-time production data, the optimization goals may
not be achieved in the real applications. This fact has origin in
continuous time-varying dynamics of the reservoir as well as the
impacts of unknown geological and financial uncertainties during
the operation. In other words, in the presence of uncertainties,
implementation of appropriate control strategies for optimizing
purposes is completely a challenging task. Hence, although many
contributions which apply different control techniques use reser-
voir models to identify the optimal response (Sarma et al., 2005;
Jansen et al., 2009), the obtained results are not applicable in prac-
tice since the considered models are rarely predictive.

When a batch of new information such as recent production
data, up-to-date well logs, and new seismic data are provided dur-
ing the operation in the oil fields, the utilized reservoir model(s)
may  be updated by history matching process. Therefore, new
optimization calculations would be done based on the updated
reservoir models (Foss and Jensen, 2011). Yet, even history-
matched models may  not be able to forecast the future behavior of
reservoirs precisely (Tavassoli et al., 2004). Consequently, instead of
periodically updating of the reservoir models via history matching
process, closed-loop control strategies based on last measured pro-
duction data have been introduced (Foss and Jensen, 2011; Jansen
et al., 2008).

In other words, besides utilizing complicated model-based
methods for optimization objectives, either gradient-based or
derivative-free techniques (Chen et al., 2008; van Essen et al.,
2011; Ciaurri et al., 2011; Giuliani and Camponogara, 2015; Wang
et al., 2016), exploring for more realistic solutions, which profit
from simplicity in comparison with fully model-based optimiza-
tion approaches, is an active research area in this domain (Foss and
Jensen, 2011; Shuai et al., 2011; Reynolds and Oliveira, 2013; de
Holanda et al., 2015). To this aim, there have been some attempts
to consider the CLRM as a regulatory feedback control problem
(Grema and Cao, 2016; Güyagüler et al., 2010; Grebenkin and
Davies, 2010). Generally, the characteristic of direct feedback-
control robustness against unknown reservoir uncertainties is one
of the strengths of this approach (Chen et al., 2012). It means that by
applying feedback control strategy, the performance becomes less
sensitive to model errors and inherent uncertainties of the oil reser-
voirs. The obtained results in (Dilib and Jackson, 2013; Dilib et al.,
2015) demonstrate that closed-loop control methodology which is
based on direct feedback between reservoir monitored variables
and production flows can lead to near optimal achievements in oil
reservoirs. Closed-loop feedback control of the reservoir can also
alleviate the effect of existing geological uncertainties on reservoir
behavior.

Based on the above explanations, transforming the complicated
reservoir optimization problem to the regulatory control frame-
work is among the possible solutions which can have acceptable
efficiency, simplicity, and potential of being easily implemented in
practice. On the other hand, due to the nature of an oil reservoir and
different uncertainty sources, field noises and disturbances dur-
ing the operation, self-optimizing-control (SOC) strategy can be a
proper candidate for optimizing the waterflooding process under
certain conditions (Grema and Cao, 2016). It has been proved that
if the controlled variables are selected appropriately in SOC frame-
work and also regulated such that they remain constant during the
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