Internal rate of return: Good and bad features, and a new way of interpreting the historic measure

Duncan A. Mellichamp
Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, United States

A R TICLE IN F O

Article history:

Received 5 October 2016
Received in revised form 18 April 2017
Accepted 3 June 2017
Available online 1 July 2017

Keywords:

Internal rate of return
Hurdle rate
Profitability measure
Enterprise rate of return
Modified internal rate of return
Business risk

Abstract

$I R R$, a widely used profitability measure, is the Discount Rate that yields Net Present Value ($N P V$) $=0$ for a stream of positive and negative cash flows, at least one of each sign and with no explicit financing payments. A big disadvantage is lack of parameters, such as a project finance rate or the enterprise rate $(E R)$, i.e., Return on Investment of the overarching investment group to serve as a measure of opportunity cost. The coupled metrics proposed earlier by the author- $N P V_{\text {project }}$ and $N P V_{\%}$-do not suffer these disadvantages, so $I R R$ is analyzed in terms of $N P V_{\%}$. Useful information can be obtained from a projection of $I R R$ values onto the $N P V_{\%}, E R$ plane revealing the sensitivity of $I R R$ to risk under meaningful operating conditions.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The Internal Rate of Return (IRR) has been used for years by economists and engineers to estimate the profitability (or potential profitability) of projects. Its definition is rooted in procedures of Discounted Cash Flow (DCF), a methodology that is utilized to "weight" cash flows occurring at the "present time" in some rational way so as to represent their value relative to "future" cash flows in later years. When coupled with Net Present Value (NPV), IRR forms the necessary second measure of profitability. NPV is scaled, i.e., with units of dollars, while IRR is un-scaled or normalized, with units of \% or \%/time. Two such measures are required to distinguish between projects that may appear to be about equal in terms of profitability but are of different size or scope. Whether the designer prefers a higher profitability or a lower scale of investment can then be considered.

Process Engineers interested in plant design/costing (Douglas, 1988; Edgar et al., 2001; Peters et al., 2003; Ross et al., 2005; Seider et al., 2008; Towler and Sinnott, 2007; Turton et al., 2003; Wells and Rose, 1986) have long used a variation of the IRR, now generally referred to as the "hurdle criterion." In this approach, a company will impose a significantly high hurdle rate before approving any conceptual design, in other words, will require that a potential process possess a minimum value of $I R R$ as its discount rate, then
choose the conceptual process alternative that yields the highest value of $N P V$ above this hurdle.

Process engineers are generally satisfied with this approach; and economists view $I R R / N P V$ as a mature area, another way of saying that the field is "dead" as far as need for additional research. Still, the reexamination of the use of $N P V$ methods made earlier by the author (Mellichamp, 2013) and (Mellichamp, 2016) indicated that much more could be accomplished by defining/using a different normalized profitability measure (the normalized $N P V$, referred to as $N P V_{\%}$). It is useful to look at the IRR concept again in light of the $N P V_{\text {\% }}$ measure, to see what it does and does not provide as an alternative.

First, it is important to note that $I R R$ is strictly defined and used only to determine whether a plant or project will be profitable enough to a company (the Enterprise) to build it. The definition specifically does not involve the concept of financing. Thus, for companies large enough to have a group that focuses on financing plants/projects, it is only after a design engineer or group evaluates that it is potentially profitable enough to the company to justify constructing and operating it for its anticipated lifetime that the "finance group" considers what alternative to use- to take on an outside financier, borrow money, sell a bond issue, sell shares of stock-and then how much of any of these is required.

[^0]| Notation | |
| :---: | :---: |
| a_{i} | Fraction allocation of Fixed capital in year $i(i=0,-1$, $-2,-3$) |
| b_{j} | Fraction allocation of $\operatorname{Profit}_{B T}$ in year $j(j=1,2,3$, etc.) |
| ${ }_{C}$ | Total production costs (Raw materials, utility and labor costs, etc. but not financing costs) |
| CF | Cash flow |
| $C R$ | Interest rate on construction loan. for large loans, multiple banks often are used |
| D_{i} | Depreciation allowed and taken in Year i [= $0.1(F C+S U)$ if project operating lifetime is 10 years and depreciation is "straight-line."] |
| DR | Discount rate used in present value calculation. In all work by the author, $D R$ is taken to be $E R$ to impose the loss of Enterprise ROR for all funds taken out of internal investments |
| DCFROR | Discounted cash flow rate of return (long name for IRR) |
| $E R$ | Enterprise rate, i.e, the long-term rate of earnings generated by the company. A classic measure of $E R$ is the average book value of company assets, as maintained by stock analysts. A five-year moving average would be appropriate |
| FC | Fixed capital ($=$ Direct Costs + Indirect costs) |
| $F R$ | Finance (interest) rate on any bond issue used to cover construction costs. In a company with an active Finance Group, this likely would be the WACC (Weighted Average Cost of Capital) |
| IRR | Internal rate of return (Discount rate that makes $\left.N P V_{0}=0\right)$ |
| N | Plant anticipated lifetime ($=N_{\text {Construction }}+N_{\text {Operations }}$) |
| NPV | Net present value (the sum of discounted Cash flows over a project's entire lifetime, i.e., design/construction/operations) |
| $N P V_{0}$ | $N P V$ at the start of process operations [i.e., at end of year(0)] |
| $N P V_{\%}^{\text {required }} N P V$ value necessary to obtain a particular value of $R O I_{B T}$ (e.g., $R O I_{B T}^{\text {required }}$) | |
| $N P V_{\text {proj }}$ | $N P V$ at the time a firm decision is made to construct, e.g., $\operatorname{EOY}(-1), \operatorname{EOY}(-2), \ldots$ depending on the length of design/construction period. thus: $N P V_{\text {proj }}=(1+D R)-N^{\text {Construction }} N P V_{0}$ |
| $N P V_{\text {proj }}^{\text {norm }}$ | $N P V_{\text {proj }} / T C I$ ($N P V_{\text {proj }}$ normalized by capital requirement, TCI) |
| $N P V_{\text {proj }}^{\text {norm/ }}$ | ann $N P V_{\text {proj }}^{\text {norm }}\left(N P V_{\text {proj }}\right.$ annualized by total lifetime of the project, i.e., the design/construction/operating period, and normalized by TCI) |
| $N P V_{\%}$ | Shorthand forNPV proj ${ }^{n+2}$ ann defined in terms of the project initiation date, not the startup date, thus based on $N P V_{\text {proj }}$ not $N P V_{0}$!] note that $N P V_{\%}$ is a linear function of $R O I_{B T}$. therefore its inverse is proportional to POT and serves as a surrogate for short-term risk |
| $N P V_{\%}^{\text {min }}$ | Minimum value of $N P V_{\%}$ that justifies intrinsic risk |
| $P_{B T}$ | Profit Before Taxes = Total Revenues - Total Production Costs $=R-C$ (Other names used Annual Profits, Gross Profits, or Net Earnings.) |
| R | Total Revenues (from operations)= Production Rate x Sales Price |

$R \quad$ Total revenues (from operations)=Production rate \times Sales price
POT Pay-Out (or Pay-Back) Time
$R O I_{B T} \quad R O I$ before taxes based on $T I=F C+S U+W C$ (calculated directly from design cost estimations.)
SU Start-up Capital (SU is assumed to be partially recovered along with $F C$ via depreciation during each year of the project lifetime.)
SV Salvage value of the plant (Recovered at end of the project's lifetime.)
TI Total investment $(=F C+W C+S U)$
TCI Total capitalized investment $(T C I \neq T I=F C+W C+S U)$, i.e., includes construction interest costs, if any.
$T R \quad$ Tax rate (The incremental rate paid for federal + state + local taxes expressed as a fraction.)
WC Working capital (recovered at the end of project lifetime along with $S V$. taxes are assumed to be paid only on $S V$ at that time.)

Greek letters

$\alpha_{W C}, \alpha_{S U}, \alpha_{S V}$ Factored estimate (multiple of Fixed capital, e.g., $W C=\alpha_{W C} F C$)

2. The good features underlying IRR

Apparently, the original idea of $I R R$ was to calculate the annual return on a purchase made with a single-payment of cash, then sold n years later for cash, for example, the acquisition of a fine painting. How much it appreciated or depreciated each year that it was owned, the so-called $I R R$, was simply the nth root of the quotient of sales and purchase values, thus
$I R R=\left[\frac{\text { Sales Price }}{\text { Purchase Price }}\right]^{1 / n}-1$
Notice that no cash flows occur except at times "going in" and "coming out" of the purchase.

Internal Rate of Return represents a similarly simple concept, a single number that does not depend in any way on financing issues (whether money is used to buy the object, if not, what rate of interest might be paid and other terms of a loan, etc.). Investors historically liked the concept and a simple interpretation appears to have been attached to it from the outset, namely, that $I R R$ represents the upper limit on the rate of interest that could be paid to purchase an object for later sale and still make a profit.

Later, multi-year projects were considered in which the costs of a project were paid out over several years, then expenses were recovered via after-tax profits earned over a subsequent period of several years. Net Present Value methods were developed to compensate for the different times at which the cash flows occurred, and it seemed natural to find a single number that could characterize an entire stream of cash flows for analysis.

However, the important issue is not whether a project will make a profit, but prospectively whether it will make enough money in early years to return the capital invested, and over its full assumed lifetime, more than enough to justify the intrinsic risks involved. Not every investment returns all the capital invested; some don't return any portion of it. An investor wants to obtain both sunk capital and sufficiently enough beyond that to compensate (at least statistically and over a long period of experience) for the known and unknown risks the investments will be exposed to.

In the process world, plant designers would like to know, well before building and starting-up a plant, just how profitable the designed project must be to justify its intrinsic risks. For this pur-

https://daneshyari.com/en/article/6469077

Download Persian Version:
https://daneshyari.com/article/6469077

Daneshyari.com

[^0]: E-mail address: dmell@engineering.ucsb.edu
 http://dx.doi.org/10.1016/j.compchemeng.2017.06.005
 0098-1354/© 2017 Elsevier Ltd. All rights reserved.

