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a  b  s  t  r  a  c  t

We  propose  piecewise  linear  kernel-based  support  vector  clustering  (SVC)  as a new  approach  tailored
to  data-driven  robust  optimization.  By  solving  a quadratic  program,  the distributional  geometry  of mas-
sive uncertain  data  can  be effectively  captured  as a  compact  convex  uncertainty  set,  which  considerably
reduces  conservatism  of robust  optimization  problems.  The  induced  robust  counterpart  problem  retains
the  same  type  as the deterministic  problem,  which  provides  significant  computational  benefits.  In addi-
tion,  by  exploiting  statistical  properties  of  SVC,  the  fraction  of data  coverage  of  the  data-driven  uncertainty
set  can  be  easily  selected  by  adjusting  only  one  parameter,  which  furnishes  an  interpretable  and  prag-
matic  way  to  control  conservatism  and  exclude  outliers.  Numerical  studies  and  an  industrial  application
of process  network  planning  demonstrate  that,  the  proposed  data-driven  approach  can  effectively  utilize
useful  information  with  massive  data,  and better  hedge  against  uncertainties  and  yield  less  conservative
solutions.

©  2017  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

In science and engineering, optimization problems are
inevitably encountered whenever one seeks to make decisions
by maximizing/minimizing some certain criterion. However, real-
world parameters are subject to randomness in various degrees,
rendering deterministic optimization models unreliable in an
uncertain environment (Sahinidis, 2004). It has been demonstrated
that even a slight perturbation on parameters in an optimization
problem could exert overwhelming effects on the computed opti-
mal  solutions, which results in suboptimality or even infeasibility
of optimization problems (Mulvey et al., 1995). Motivated by the
urgent requirement of handling uncertainties in decision mak-
ing, stochastic optimization and robust optimization have received
immense research attentions in recent decades (Kall et al., 1994;
Ben-Tal et al., 2009; Birge and Louveaux, 2011; Bertsimas et al.,
2011; Gabrel et al., 2014; Yuan et al., 2017), which hedge against
uncertainties by bringing in conservatism. Stochastic optimization
entails complete knowledge about the underlying probability dis-
tribution of uncertainties, which may  be unrealistic in practice. As
an effective alternative, robust optimization takes a deterministic
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and set-based way to model uncertainties, and balance between
the modeling power and computational tractability, which has
obtained considerable attentions recently in the realm of process
systems engineering. Typical applications include process network
design (Gong et al., 2016; Gong and You, 2017), supply chain
management (Tong et al., 2014; Yue and You, 2016), and process
scheduling (Shi and You, 2016).

A paramount ingredient in robust optimization is to construct
an uncertainty set including probable realizations of uncertain
parameters. The earliest attempts in formulating uncertainty sets
date back to the 1970s, with the work of Soyster (1973), in which
coefficients are perturbed by uncertainties distributed in a known
box. Despite its computational convenience and guaranteed feasi-
bility, the box uncertainty set tends to induce over-conservative
decisions. Later, immense research effort has been made on devis-
ing more flexible robust models to ameliorate over-conservatism.
Ellipsoidal uncertainty sets have been put forward indepen-
dently by El Ghaoui et al. (1998); Ben-Tal and Nemirovski (1998,
1999), based on which the robust counterpart model simplifies
to a conic quadratic problem in the presence of linear con-
straints. To enhance the modeling flexibilities, intersections of
basic uncertainty sets have been designed, including the “inter-
val + ellipsoidal” uncertainty set (Ben-Tal and Nemirovski, 2000)
and the “interval + polyhedral” uncertainty set. Bertsimas and Sim
(2004) robustify linear programs using a polyhedral uncertainty
set adjustable with the so-called budget,  which turns out to be
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identical to the “interval + polyhedral” uncertainty set. Interested
readers are referred to review papers (Bertsimas et al., 2011; Gabrel
et al., 2014) and the monograph (Ben-Tal et al., 2009) for a compre-
hensive overview of uncertainty sets-induced robust optimization
methods.

Despite the burgeoning prevalence of uncertainty set-induced
robust optimization, a potential limitation is that uncertainties in
each dimension are assumed as being independently and symmet-
rically distributed. The issue of data correlation is first addressed
by Bertsimas and Sim (2004), in which correlated uncertainties
are disentangled by means of an underlying source of independent
uncertainties, expressed as:

ãij = aij +
∑
k ∈ Ki

�̃ikgkj. (1)

where {aij} stands for the nominal value, and {�̃ik} denotes the
source of independent uncertainties. Ferreira et al. (2012) suggest
determining the values of {ãij} and {gkj} by means of principal
component analysis (PCA) and minimum power decomposition
(MPD). Based on (1), classical symmetric uncertainty sets are gen-
eralized by Yuan et al. (2016), and explicit formulations of their
robust counterparts are also provided. Jalilvand-Nejad et al. (2016)
devise correlated polyhedral uncertainty sets using second-order
statistical information from historical data. In regard to asymmetric
uncertainties, Chen et al. (2007) adopt the forward and backward
deviations to capture distributional asymmetry through the norm-
induced uncertainty set while still preserving its tractability. In
Natarajan et al. (2008), a modified value-at-risk (VaR) measure is
developed and investigated by taking into account asymmetries in
the distributions of portfolio returns.

A prominent and practical issue of uncertainty set-induced
robust optimization is how to determine the set coefficients
appropriately, which are in general assumed as known accord-
ing to domain-specific knowledge. In the absence of first-principle
knowledge, leveraging available historical data provides a practi-
cal way to characterize the distributional information. For instance,
the lower and the upper bounds of an interval can be specified
as the minimum and the maximum of observed data sam-
ples, albeit conservatively. More sophisticated approaches make
use of variance and covariance of historical data, which ren-
ders the model statistically interpretable (Pachamanova, 2002;
Bertsimas and Pachamanova, 2008; Ferreira et al., 2012). An
alternative streamline of data-driven optimization is the dis-
tributionally robust optimization, which utilizes both data and
hypothesis tests to construct the ambiguity set including P  at
a high confidence level (Delage and Ye, 2010; Jiang and Guan,
2016; Bertsimas et al., 2017). However, one still needs to spec-
ify the type of hypothesis tests to yield a reliable solution,
and the induced optimization problem is generally difficult to
solve (Hanasusanto et al., 2017). For example, the moment-
based hypothesis test typically leads to reformulations in terms
of linear matrix inequalities and bilinear matrix inequalities
(Delage and Ye, 2010; Zymler et al., 2013), which erect obsta-
cles to further tackle mixed-integer and large-scale problems
that are commonly encountered in process systems engineering.
In this work, we hence focus on uncertainty set-based robust
optimization with better applicability and implementation conve-
nience.

In real-world applications, the underlying distribution P  of
uncertainties may  be intrinsically complicated and vary under dif-
ferent circumstances. When one is faced with high-dimensional
uncertainties, it is rather challenging to choose the type of uncer-
tainty sets by prior knowledge, tune the coefficients, and further
evaluate its divergence with the true underlying distribution P. The
era of big data paves new way for decision-making under uncer-

tainties by exploiting massive data available at hand (Bertsimas
et al., 2011; Qin, 2014). A desirable uncertainty set shall flex-
ibly adapt to the intrinsic structure behind data, thereby well
characterizing P  and ameliorating the suboptimality of solutions.
From a machine learning perspective, constructions of uncertainty
sets based upon historical data can be viewed as an unsuper-
vised learning problem. There have been a plethora of effective
unsupervised learning models, for example, kernel density esti-
mation (KDE) and support vector machines (SVM), which could
provide powerful representations of data distributions (Bishop,
2006). In principle, one could resort to such machine learn-
ing tools to estimate data densities with sufficient accuracies;
nevertheless, it remains a challenging task to formulate an appro-
priate uncertainty set for modeling robust optimization problems.
This is mainly because complicating nonlinear items, such as
the radial basis function (RBF) exp{−x2/2�2} and the sigmoid
function tanh(�x + r), dominate conventional machine learning
models, which invariably prohibit an analytical treatment of robust
optimization problems, especially a tractable robust counterpart
reformulation. This may  somewhat explain the scarce of applica-
tions of machine learning models in robust optimization all this
time.

In this paper, we propose an effective data-driven approach for
robust optimization that is tailored to uncertainty set construc-
tions as well as computational implementations, thereby bridging
machine learning and robust optimization directly. As an extended
SVM technology, support vector clustering (SVC) has been exten-
sively adopted to estimate the support of an unknown probability
distribution from random data samples (Schölkopf et al., 1999;
Müller et al., 2001). A particular merit of SVC is that it has
theoretical underpinnings in statistical learning theory (Vapnik,
2013), and enjoys desirable generalization performance in face
of real-world problems (Lee and Lee, 2005). Instead of using the
ubiquitous RBF kernel involving intricate nonlinearities, a novel
piecewise linear kernel, referred to as the generalized intersec-
tion kernel, is proposed in this work to formulate the SVC model,
which entails solving a quadratic program (QP) only. Thanks to the
kernel formulation, the SVC model could not only handle corre-
lated uncertainties and lead to asymmetric uncertainty sets, but
also enjoys an adaptive complexity, thereby featuring a nonpara-
metric scheme. Most importantly, it leads to a convex polyhedral
uncertainty set, thereby rendering the robust counterpart prob-
lem of the same type as the deterministic problem, which provides
computational convenience. If the deterministic problem is an
MILP, then the robust counterpart problem can be also cast as
an MILP. In this way, a satisfactory trade-off can be achieved
between modeling power of SVC and computational convenience
of robust optimization. Moreover, we show that the parameters
to be tuned bear explicit statistical implications, which allow
one to easily control the conservatism as well as the complex-
ity of the induced robust optimization problems. Numerical and
application case studies are conducted to show the practicabil-
ity and efficacy of the proposed data-driven approach in hedging
against uncertainties and alleviating the conservatism of robust
solutions.

The layout of this paper is organized as follows. Section 2 revisits
the conventional uncertainty sets for robust optimization, and the
SVC-based unsupervised learning schema. In Section 3, the piece-
wise linear kernel-based SVC is proposed, along with the induced
data-driven uncertainty set. Its properties are also discussed from
various aspects, including the parameter interpretation, asymp-
totic behavior, and computational tractability. Section 4 is devoted
to a comprehensive numerical evaluation on the performance of
the proposed approach compared with classical ones. In Section
5, case studies on an application of process network planning are
performed, followed by concluding remarks in Section 6.
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