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a  b  s  t  r  a  c  t

Dynamic  mode  decomposition  with  control  (DMDc)  is  a  modal  decomposition  method  that  extracts
dynamically  relevant  spatial  structures  disambiguating  between  the  underlying  dynamics  and  the  effects
of  actuation.  In this  work,  we  extend  the  concepts  of DMDc  to better  capture  the local  dynamics
associated  with  highly  nonlinear  processes  and  develop  temporally  local  reduced-order  models  that
accurately  describe  the fully-resolved  data.  In this  context,  we  first  partition  the  data  into  clusters  using
a  Mixed  Integer  Nonlinear  Programming  based  optimization  algorithm,  the  Global  Optimum  Search,
which  incorporates  an added  feature  of  predicting  the  optimal  number  of  clusters.  Next,  we  compute
the  reduced-order  models  tailored  to  each  cluster  by applying  DMDc  within  each  cluster.  The  developed
models  are  subsequently  used  to compute  approximate  solutions  to  the  original  high-dimensional  sys-
tem  and  to design  a feedback  control  system  of hydraulic  fracturing  processes  for  the  computation  of
optimal  pumping  schedules.

Published  by  Elsevier  Ltd.

1. Introduction

Many chemical processes and fluid systems have models that
apparently describe their dynamics to near-perfect accuracy. How-
ever, very often, these turn out to be high-dimensional complex
models and the fully-resolved simulations necessary to capture
their detailed nonlinear behaviors put a considerable strain on
computational resources. This limits the capability to perform
parameter estimation or design feedback control systems which
require real-time computation of dynamic solutions. Nevertheless,
despite the fact that they are governed by high-dimensional sys-
tems, very often the dominant behavior can be captured by modes
that are many orders of magnitude smaller than the dimension of
the original system. For instance, Noack et al. (2003) showed that
as few as three ordinary differential equations can describe the
essential features of a laminar flow past a 2D cylinder. Thus, prac-
tical engineering strategies for dealing with high-dimensional data
require developing simplified (reduced-order) models that signif-
icantly reduce the dimension of the underlying system to remain
computationally-tractable at the negligible expense of model accu-
racy.
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The field of reduced-order modeling is large, and new meth-
ods are being developed at a fast pace. Among these, two of the
most commonly used modal decomposition techniques are Proper
Orthogonal Decomposition (POD) and Dynamic Mode Decomposi-
tion (DMD). Both of them are based on analyzing information from
a sequence of observational data arising from high-dimensional
systems to identify coherent structures embedded in the system.
POD determines the structures that capture the most energy to
optimally reconstruct a data set arising from a linear or nonlinear
dynamical process in the mean square sense (Holmes et al., 1996).
However, the energy criterion may  not be the relevant measure to
precisely rank the flow structures in all the circumstances (Noack
et al., 2008). DMD  has originally been introduced in the fluids
community (Schmid and Sesterhenn, 2008) to yield flow struc-
tures that accurately describe the motion of the flow. In contrast
to POD, this method extracts modes that are dynamically relevant
spatial structures rather than selecting the dominant modes that
capture most of the flow energy. Ghommem et al. (2014) has shown
that the DMD-based approach extracted modes that are more rel-
evant for long-term dynamics compared to POD. Computationally,
DMD assumes a linear model that best represents the underlying
dynamics, even if those dynamics stem from a nonlinear process.
Although it might seem equivocal describing a nonlinear system
by superposition of modes whose dynamics are governed by the
corresponding eigenvalues, DMD  can be considered a numerical
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approximation to Koopman spectral analysis providing theoreti-
cal justification for characterizing nonlinear systems (Rowley et al.,
2009; Mezić, 2013; Bagheri, 2013). After gaining quick popularity,
DMD has found successful implementation in many fluid mechan-
ics applications to analyze both numerical (Schmid, 2010; Schmid
et al., 2011; Seena and Sung, 2011; Mizuno et al., 2011; Muld et al.,
2012) as well as experimental (Schmid, 2009, 2011; Schmid et al.,
2009; Pan et al., 2011; Semeraro et al., 2012; Lusseyran et al., 2011;
Duke et al., 2012) flow field data and help characterizing relevant
physical mechanisms. Several efforts have been made to explore
the connections of DMD with other methods, such as Eigensystem
Realization Algorithm (ERA) (Tu et al., 2014), Fourier Analysis (Chen
et al., 2012), POD (Schmid, 2010) and Koopman analysis (Rowley
et al., 2009; Mezić, 2013; Bagheri, 2013). Several variants of the
DMD algorithm have also been proposed, including optimized DMD
(Chen et al., 2012), optimal mode decomposition (Goulart et al.,
2012; Wynn et al., 2013), sparsity promoting DMD  (Jovanović et al.,
2014) and extended DMD  (Williams et al., 2015).

Within this context, Proctor et al. (2016) extended the concepts
of DMD  and introduced the method of Dynamic Mode Decompo-
sition with control (DMDc) to utilize both measurements of the
system and applied external inputs in extracting the underlying
dynamics. Additionally, DMDc also provides a description of how
the control inputs affect the system, and with this understanding of
the input-to-output behavior, a reduced-order model can be gener-
ated and used in the design of feedback control systems to regulate
the original high-dimensional systems. DMDc inherits a number of
advantages of DMD in that it is a completely data-driven framework
and can be applied to nonlinear systems. Furthermore, there are a
number of connections between DMDc and other popular system
identification methods such as Observer Kalman Filter Identifica-
tion (OKID) (Juang et al., 1991), Numerical Algorithms for Subspace
State Space System Identification (N4SID) (Van Overschee and De
Moor, 1994), Multivariable Output Error State Space (MOESP) (Van
Overschee and De Moor, 1996), and Canonical Variate Analysis
(CVA) (Katayama, 2005). Algorithmically, these methods involve
regression, model reduction, and parameter estimation steps simi-
lar to DMDc. However, differences do exist in terms of the similarity
transformation required for projection and the use of an orthog-
onal complement of control inputs to generate the approximate
solution (Qin, 2006). Therefore, DMDc can be used in diverse engi-
neering applications, one of which is presented in this manuscript,
where the study of dynamics while simultaneously considering the
applied control input to the complex systems is important.

However, for a highly nonlinear system, the assumption of
linear relation might not work well, especially in the case of lim-
ited access to spatial and/or temporal measurements. Additionally,
these global methods fail to capture the local dynamics when the
process parameters change with space and time (e.g., permeability
and Young’s modulus in the rock formation are space-dependent
constants). Based on these observations, in order to capture the
local dynamics of a complex nonlinear system more effectively,
the embedded coherent structures must be tailored to the tem-
porally local behavior of every portion of the solution trajectory.
This idea of local model reduction has been applied successfully in
several applications. In Dihlmann et al. (2011), the time domain
was partitioned into multiple subdomains and temporally local
eigenfunctions were used to construct a reduced-order model.
Local bases were also exploited by Anttonen (2001) in the context
of aeroelastic applications according to a space domain parti-
tion. In Ghommem et al. (2013), a global-local model reduction
approach was presented where a generalized multiscale finite ele-
ment method (GMsFEM) was combined with DMD  and/or POD
and applied to flows in high-contrast porous media. In Efendiev
et al. (2012), a balanced truncation based global model reduc-
tion was efficiently combined with the local model reduction

tools introduced in Efendiev et al. (2011). Our previous work also
exploited the idea of time-domain partitioning to develop tem-
porally local reduced-order models to accurately approximate the
fully-resolved data (Narasingam et al., 2017).

Our contribution in this work is integrating the idea of
temporal-clustering to DMDc to develop tailored temporally local
reduced-order models that reproduce the essential features of the
underlying system and quantify the effect of control inputs on the
process dynamics of the system. Because the accuracy of the local
approach depends on the number of clusters, our motivation is to
obtain inexpensive decomposition problems while preserving the
accuracy of the approximated models. In the proposed framework,
we achieve this goal by using the Global Optimum Search algorithm
(GOS) which predicts the optimal number of clusters based on the
similarity and dissimilarity of the cluster configurations (Tan et al.,
2007). Since the developed temporally local reduced-order models
are computationally inexpensive, yet fairly accurate dynamic mod-
els, they can be used to design feedback control systems based on
a model predictive control (MPC) framework. The proposed model
reduction technique is different from other earlier works in that
it is a completely data-driven approach and does not require any
knowledge in terms of the system model. For example, Christofides
and Daoutidis (1997) used an elegant singular perturbation based
approximate inertial manifolds (AIMs) for the construction of
low-dimensional ordinary differential equations (ODEs) that are
subsequently used in the synthesis of non-linear output feedback
controllers that guarantee stability. Baker and Christofides (2000)
extended this concept to nonlinear parabolic PDE systems by first
computing a set of empirical eigenfunctions to be used as basis
functions in the Galerkin’s framework. In Armaou and Christofides
(2001), a mathematical transformation was used to construct a
finite-dimensional model of a nonlinear parabolic PDE system with
time-varying spatial domains. Izadi and Dubljevic (2013) presented
a systematic approach to compute time-varying empirical eigen-
functions by an appropriate mapping onto the time-varying spatial
domain. However, the aforementioned methods require math-
ematical expressions for system models and their time-varying
spatial domains to construct low-dimensional approximate mod-
els. In contrast, the proposed approach requires no such knowledge
and approximate models can simply be obtained using the data
snapshots.

The remainder of this work is organized as follows. Section 2
provides a theoretical background on DMD  and presents mathe-
matical formulations for DMDc. Section 3 discusses the proposed
methodology and outlines an algorithm for computing temporally
local reduced-order models. Application of the proposed tem-
porally local DMDc method on a hydraulic fracturing process is
described in Section 4, and a series of numerical simulation results
including (a) a performance assessment of the proposed local
method over the global method, (b) a study of factors influenc-
ing the accuracy of the proposed method and (c) a comprehensive
design of a model predictive controller to achieve a specified control
objective in the hydraulic fracturing process are presented.

2. Theoretical background

2.1. Dynamic mode decomposition

DMD  is a method that can extract dynamically relevant spatial
structures solely from the data of a high-dimensional complex sys-
tem. These structures, called dynamic modes, are equivalent to a
linear tangent approximation and describe the dominant dynamic
behavior of a nonlinear data sequence. In this section, we present
a short mathematical description of DMD  and the formulations
required for DMDc.
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