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a  b  s  t  r  a  c  t

Solving  a multi-objective  optimization  problem  yields  an  infinite  set  of points  in  which  no  objective
can  be  improved  without  worsening  at least  another  objective.  This set is called  the  Pareto  front.  A
Pareto  front  with  adaptive  resolution  is a  representation  where  the  number  of  points  at  any  segment
of  the  Pareto  front  is  directly  proportional  to  the curvature  of  this  segment.  Such  representations  are
attractive  since  steep  segments,  i.e.,  knees,  are  more  significant  to  the  decision  maker  as  they  have  high
trade-off  level  compared  to the  more  flat  segments  of the  solution  curve.  A  simple  way  to  obtain  such
representation  is  the  a posteriori  analysis  of a dense  Pareto  front  by  a smart  filter  to  keep  only  the
points  with  significant  trade-offs  among  them.  However,  this  method  suffers  from  the  production  of
a large  overhead  of  insignificant  points  as well  as  the  absence  of  a  clear  criterion  for  determining  the
required  density  of the  initial dense  representation  of the  Pareto  front.  This  paper’s  contribution  is  a
novel  algorithm  for obtaining  a Pareto  front  with  adaptive  resolution.  The  algorithm  overcomes  the
pitfalls  of  the smart  filter strategy  by  obtaining  the  Pareto  points  recursively  while  calculating  the  trade-
off  level  between  the obtained  points  before  moving  to  a deeper  recursive  call.  By  using  this  approach,
once  a segment  of  trade-offs  insignificant  to the  decision  maker’s  needs  is  identified,  the  algorithm  stops
exploring  it  further.  The improved  speed  of the  proposed  algorithm  along  with  its  intuitively  simple
solution  process  make  it a more  attractive  route  to solve  multi-objective  optimization  problems  in a  way
that  better  suits  the decision  maker’s  needs.

© 2017  Published  by Elsevier  Ltd.

1. Introduction

Biochemical processes are usually dynamic systems that are
described by a set of differential equations. The optimization of such
processes is carried out using control variables to achieve either
one objective, yielding a single objective optimization problem
(SOOP) or multiple objectives, yielding a multi-objective optimiza-
tion problem (MOOP). Finding the optimal control trajectories as
a function of time is a situation that is frequently encountered in
chemical engineering applications, e.g., finding the time optimal
feed rate for a fed-batch reactor. The problem is typically solved
by discretizing the continuous control variable into a large number
of discrete variables over the time/space interval making it a rel-
atively computationally expensive problem to solve. This makes a
multi-objective setting particularly challenging as the control prob-
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lem has to be repeatedly solved during the solution process. For
MOOPs, a set of mathematically equivalent optimal points exists,
called the Pareto front. There are two classes of techniques to obtain
an approximation of the Pareto set: vectorization and scalariza-
tion methods. Vectorization methods (Deb, 2001) are stochastic
techniques that tackle the multi-objective optimization problem
directly. However, their time consuming nature and the difficulty
of incorporating state constraints make them less attractive to be
applied in optimal control problems (Logist et al., 2012). On the
other hand, scalarization methods (Miettinen, 1999) have been
frequently implemented to solve Multi-Objective Optimal Control
Problems (MOOCPs). They work by parameterizing the original
MOOP into a series of SOOPs. Solving each SOOP yields a point on the
Pareto front such that a Pareto front representation can be obtained
for the Decision Maker (DM) to examine. It is natural to assume
that not all segments of the Pareto front are equally important to
a potential DM (Mattson et al., 2004; Antipova et al., 2015). Exam-
ples of techniques for the a posteriori analysis of obtained solutions
are the order of efficiency filter (Antipova et al., 2015), which ranks
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solutions according to how balanced their overall performance is,
and the smart filter (Mattson et al., 2004). The motivation for using
a smart filter is to emphasize the segments more attractive to the
DM in the final representation at the expense of the less significant
segments of the curve. The steeper segments, the “knees” of the rep-
resentation, have higher trade-off level than the more flat “plateau”
segments. For a prespecified trade-off level, the filter removes the
solutions deemed insignificant to the DM,  keeping only solutions
which have significant trade-offs between each other. However,
the main disadvantage of this approach is the need to produce a
dense representation with excess of insignificant solutions for the
filter to act on. Considering the large computational cost for solv-
ing an instance of a MOOCP, this hinders applying the smart filter
strategy to this class of computationally intensive problems. In this
paper, an alternative approach is introduced to obtain a Pareto front
with adaptive resolution. The novel algorithm utilizes a recursive
paradigm in exploring the Pareto front. This way, once a segment
of insignificant trade-off level to the decision maker is identified,
the algorithm stops generating more solutions within this segment.
The paper is structured as follows: in Section 2, the mathematical
formulations for solving a MOOCP are introduced. The algorithm’s
concept of operation is developed in Section 3. Several numerical
problems as well as a dynamic benchmark example are presented
in Section 4 while the obtained simulation results are discussed in
Section 5. Finally, Section 6 summarizes the paper’s conclusions.

2. Mathematical formulations

This section is structured as follows: first, the general formu-
lation of multi-objective optimal control problems is discussed.
Then, an overview of multi-objective solution algorithms is pre-
sented as well as the formulation of a smart filter for the a posteriori
analysis of the Pareto front. Finally, Pomodoro, an in-house library
used in this paper for solving dynamic optimization problems is
introduced.

2.1. Multi-objective optimization formulation

A multi-objective optimal control problem (MOOCP) can be for-
mulated as a minimization problem as follows (Logist et al., 2010):

min
u(�),x(�),p,�f

{J1, J2, . . .,  Jm} (1)

subject to:

dx

d�
= F(x(�), u(�), p, �f) � ∈ [0,  �f] (2)

0 = bi(x(0), p) (3)

0 = bt(x(�f), p) (4)

0 ≥ cp(x(�), u(�), p, �) (5)

0 ≥ ct(x(�f), p, �f) (6)

where m is the number of objectives, � is the independent vari-
able, usually time and typically ranging from 0 to �f, x are
the state variables, u represents the control variables and p the
time-invariant parameters of the process. The (nonlinear) model
equations are denoted by F. The vectors bi and bt represent the
initial and terminal conditions, respectively. The vectors cp and
ct denote the path and terminal inequality constraints. In this
work, an individual objective function Ji is generally formulated as
follows:

Ji = Mi(x(�f), p, �f) +
∫ �f

0

Li(x(�), u(�), p, �)d� (7)

with Mi(x(�f), p, �f) the Mayer term, which represents the termi-
nal cost, e.g., the final conversion at the end of the process and∫ �f

0
Li(x(�), u(�), p, �)d� the Lagrange term, representing the inte-

gral cost over the interval [0, �f], e.g., total fuel consumption during
the process.

Finally, for conciseness, a vector of the optimization variables is

defined as y = [x( · )�, u( · )�, p�, �f]
�

. The individual objective func-
tions are grouped in a vector as J(y) = [J1(y), J2(y), . . .,  Jm(y)]� and
the set of feasible solutions S is defined as all vectors y that satisfy
the imposed constraints (2)–(6) (Logist et al., 2010).

In multi-objective optimization no single optimal solution exists
so the notion of Pareto optimality is adopted. As formulated in
Miettinen (1999), a vector y* is said to be Pareto optimal if there
exists no other y ∈ S such that Ji(y) ≤ Ji(y*) for i = 1, 2, . . .,  m and
Ji(y) < Ji(y*) for at least one Ji. A Pareto point is said to be not domi-
nated by any other point in the objective space. This means that y*

is a Pareto optimal point if there exists no other feasible point that
would improve a certain objective without causing a simultaneous
increase in another objective. Unless all the objectives are not con-
flicting, an infinite set of solutions will exist. The complete set of
Pareto solutions is called the Pareto front, (Miettinen, 1999; Logist
et al., 2010).

2.2. Multi-objective optimization solution algorithms

According to a review by Marler and Arora (2004), two major
classes of methods exist to obtain a Pareto front: vectorization
methods and scalarization methods. Vectorization methods (Deb,
2001) work by solving the multi-objective optimization problem
directly using stochastic algorithms. The drawbacks of these meth-
ods, as explained in Logist et al. (2010) are their inability to handle
complex constraints, being time consuming and being limited to
low dimensional search spaces. On the other hand, scalarization
methods (Miettinen, 1999) are deterministic and can handle a large
number of decision variables and constraints. However, they are
prone to converging to local optima. In this class of methods, the
multi-objective optimization problem is converted to a series of
parametrized single objective optimization problems. This set is
typically generated by varying a parameters/weights vector. This
way, solving each sub-problem gives a point on the Pareto front.
Since, dynamic optimization problems usually involve a high num-
ber of constraints, scalarization methods are more suited to solve
them, several successful applications can be found in de Hijas-Liste
et al. (2014); Telen et al. (2012); Nimmegeers et al. (2016). Three of
the most widely used scalarization methods are discussed in this
section: weighted sum method, normal boundary intersection and
(enhanced) normalized normal constraint.

2.2.1. Weighted sum method (WS)
The (convex) weighted sum method is one of the most widely

applied scalarization techniques in practice, mainly due to its sim-
plicity. It is based on combining the multiple objectives into a single
convex function composed of their weighted sums as follows Logist
et al. (2010):

min
y

m∑
i=1

wiJi(y) = w�J(y) (8)

where the weights wi can be grouped in w. Furthermore, wi ≥ 0
with i = 1, 2, . . .,  m and

∑m
i=1wi = 1. The solution of this minimiza-

tion problem is obtained at y*. Since the obtained point is a Pareto
optimal solution, it lies on the Pareto front of the feasible objectives
space. The procedure of the weighted sum method is solving the
minimization problem repeatedly using different combinations of
w to obtain multiple points on the Pareto front. However, despite
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