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a  b  s  t  r  a  c  t

A  new  method  is  presented  for enclosing  the  reachable  sets  of  nonlinear  ordinary  differential  equations
subject  to  a range  of inputs.  Reachable  set  enclosures  are  used  for uncertainty  propagation,  robust  con-
trol,  and  global  optimization  of  dynamic  systems  arising  in a  variety  of  applications.  However,  existing
methods  often  provide  an  unworkable  compromise  between  cost  and  accuracy.  For  example,  fast  inter-
val methods  often  produce  divergent  bounds,  while  methods  based  on more  complex  sets  scale  poorly
with  problem  size.  To  overcome  this,  a novel  method  is introduced  for  reducing  the  conservatism  of
fast  interval  methods  through  the  select  addition  of  redundant  model  equations  that  can  be  exploited
in  the  bounding  procedure.  Several  case  studies  demonstrate  that  such  redundancy  can  dramatically
reduce  conservatism.  The  additional  cost  is modest  in  most  cases,  but  does  become  significant  when
many  redundant  equations  are  used.

© 2017  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

This article presents a new method for computing a rigorous
enclosure of the set of solutions reachable by a given system of
nonlinear ordinary differential equations (ODEs) subject to uncer-
tain inputs (i.e., initial conditions and model parameters). Such sets
are referred to as reachable sets, and methods for enclosing them
are useful for quantifying the effects of uncertainty in dynamic
models arising in various applications, including (bio)chemical
reaction networks (Scott and Barton, 2010a,b; Moisan et al., 2009),
autonomous vehicles (Wang et al., 2015; Althoff and Dolan, 2014),
and power systems (Pico and Aliprantis, 2014; Althoff et al., 2012).
Such methods are also useful for process control, where the reach-
able sets of interest describe the uncertainty in a system’s state
arising from disturbances, imprecisely known model parameters,
and measurement errors. Enclosing these sets is a central step in
set-based state estimation (Raissi et al., 2004; Moisan et al., 2009),
which is used for robust model predictive control (Limon et al.,
2005; Hariprasad and Bhartiya, 2014) and set-based fault detection
(Scott et al., 2016; Tulsyan and Barton, 2016; Raimondo et al., 2016).
Reachability calculations are also used within algorithms for deter-
mining the set of inputs that lead to a desired set of ‘safe’ states,
as in the construction design spaces for pharmaceutical processes
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(Kishida and Braatz, 2014, 2015). Finally, reachable set enclosures
are also used in algorithms for solving dynamic optimization prob-
lems to guaranteed global optimality, which have been used to
solve parameter estimation and open-loop optimal control prob-
lems (Singer et al., 2006; Scott and Barton, 2015; Lin and Stadtherr,
2007; Houska and Chachuat, 2014). In this context, the reachable
sets describe the range of solutions that can be achieved by decision
variables in a given region of the search space, and enclosures are
used to eliminate regions by proving infeasibility or suboptimality.

Unfortunately, existing methods do not provide enclosures with
sufficient speed and accuracy for many important applications.
For example, in set-based state estimation and robust control, the
desired enclosures depend on process measurements. This requires
methods that are both fast enough for real-time implementation
and accurate enough to be useful for decision-making. Similarly,
global dynamic optimization requires accurate enclosures to avoid
excessive subdivision of the search space, and high speed because
even accurate methods may  still consider thousands of regions
(Wechsung et al., 2014). This combination of speed and accuracy
remains a challenge.

Methods for enclosing reachable sets of nonlinear ODEs fall
into three broad categories: Taylor series methods, conservative
linearization, and differential inequalities. Although we  focus on
continuous-time dynamics here, other approaches are available for
discrete-time systems, particularly with rational right-hand sides,
based on e.g. linear fractional transformations and skewed struc-
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tured singular values (Kishida et al., 2014; Kishida and Braatz,
2011).

Taylor series methods propagate enclosures over discrete time
steps by constructing a Taylor expansion of the states with respect
to time and bounding the coefficients with, e.g., interval arithmetic
(Nedialkov et al., 1999). The resulting enclosure is then inflated by
a rigorous bound on the truncation error. Classical methods prop-
agate interval enclosures, which makes them relatively efficient
but often conservative. Modern methods achieve high accuracy by
using Taylor models, which are multivariate Taylor expansions in
the model inputs with rigorous interval remainder bounds (Berz
and Makino, 2006; Lin and Stadtherr, 2007). Further improve-
ments have been achieved using ellipsoidal and other non-interval
remainder bounds (Houska et al., 2013, 2015). However, high accu-
racy often requires high-order Taylor models, which can become
intractable because the number of coefficients scales exponentially
in the number of states and inputs.

Conservative linearization methods propagate enclosures over
discrete time steps by first using a locally linearized model and then
adding a rigorous bound on the linearization error (Althoff et al.,
2008; Althoff and Krogh, 2014). The reachable sets of the linear
system can be enclosed using efficient set representations such as
ellipsoids or zonotopes, and modern methods of this type have been
shown to produce highly accurate enclosures in many applications
(Althoff et al., 2012; Althoff and Dolan, 2014). However, this often
requires complex set representations and hence high cost (see e.g.
the use of 400th order zonotopes, each described by 2406 real num-
bers, to enclose 6-dimensional reachable sets in (Scott and Barton,
2013a,b)).

Finally, differential inequalities (DI) methods construct and
solve an auxiliary system of ODEs that describes componentwise
upper and lower bounds on the reachable set as its solutions.
Harrison (1977) originally observed that such a system can be con-
structed automatically using interval arithmetic. Moreover, this
system can be solved with any state-of-the-art numerical inte-
grator, whereas both Taylor series and conservative linearization
methods require custom integration algorithms with significant
step-size restrictions. Thus, DI methods are capable of produc-
ing bounds very rapidly (i.e., at a small multiple of the cost of
integrating a single trajectory (Scott and Barton, 2013a,b)), mak-
ing DI a potentially powerful tool for real-time control and global
dynamic optimization. However, the resulting enclosures are often
extremely conservative. Several methods have been proposed to
address this by enabling the use of more complex set representa-
tions in place of intervals. Chachuat and Villanueva (2012) proposed
an interesting use of DI to compute Taylor model enclosures. How-
ever, auxiliary ODEs are required for each Taylor coefficient, which
is prohibitive for high-order expansions. Villanueva et al. (2015)
introduced a general framework for using DI to compute general
convex enclosures. Specific implementations have been developed
by Scott and Barton (2010, 2013) and Harwood et al. (2016). In par-
ticular, Harwood et al. (2016) introduced an effective method for
computing polytopic enclosures using DI. However, this method
constructs auxiliary ODEs whose right-hand sides are evaluated
by solving embedded linear programs rather than using interval
arithmetic, which leads to significantly longer computation times.

This article presents a new method for reducing the conser-
vatism of the DI approach while largely maintaining its efficiency.
Rather than using complex non-interval enclosures, the central idea
is to exploit model redundancy. This strategy is motivated by effec-
tive DI methods that have recently been developed for systems
whose solutions satisfy natural bounds (e.g., nonnegativity) and
linear relationships (e.g., conservation laws) that are implied by,
and hence redundant with, the governing ODEs (Singer and Barton,
2006; Scott and Barton, 2010, 2013). In brief, it has been shown
that such redundant relationships can be exploited within the DI

bounding procedure to achieve much sharper bounds. Moreover,
this is done using only fast interval operations, so the speed of the
standard DI method is largely retained (Scott and Barton, 2013a,b).
Unfortunately, these methods do not apply to the majority of sys-
tems of practical interest, which do not naturally obey any such
redundant relations.

To address this limitation, this article presents a new technique
for general nonlinear systems based on the deliberate introduction
of carefully selected redundant equations, which are then exploited
in a DI bounding procedure similar to that in (Scott and Barton,
2013a,b). This can be viewed as a dynamic analogue of methods
used to generate redundant constraints in global optimization algo-
rithms, such as the reformulation linearization technique (Sherali
and Adams, 2009). Although an automated method for selecting
redundant equations is not yet available, we demonstrate this tech-
nique through several detailed case studies, which clearly show
that redundancy can dramatically reduce conservatism. The addi-
tional cost is modest in most cases, but does become significant
when many redundant equations are used, highlighting the need
for future work on selection heuristics. The mechanisms by which
redundancy reduces conservatism are discussed in detail, and we
provide preconditioning heuristics that significantly improve the
efficacy of the added equations. Although we only consider DI, our
results suggest that redundant equations could be used to reduce
conservatism in other approaches as well, potentially enabling the
use of lower complexity sets. Indeed, Villanueva et al. (2014) have
shown that pre-existing affine solution invariants can stabilize the
enclosures computed by Taylor methods.

2. Problem Statement

Let I = [t0, tf ], P ⊂ R
np compact, D ⊂ R

nx open, and f : I × P ×
D → R

nx and x0 : P → D locally Lipschitz continuous. Consider the
nonlinear ODEs

ẋ(t, p) = f(t, p, x(t, p)), x(t0, p) = x0(p), (1)

where a solution is any continuously differentiable x : I × P → D sat-
isfying (1) for all (t, p) ∈ I × P. It is assumed that a unique solution
exists on I for every p ∈ P.

Definition 1. The reachable set of (1) at t ∈ I is

Re(t) ≡ {x(t, p) : p ∈ P}. (2)

Moreover, functions xL, xU : I → R
nx are state bounds for (1) if

xL(t) ≤ x(t, p) ≤ xU(t), ∀ (t, p) ∈ I × P.
The best possible state bounds describe the interval hull of Re(t),

while all others are conservative. Our aim is to develop a method
that exploits model redundancy to efficiently compute state bounds
with minimal conservatism.

3. Background

3.1. Interval Arithmetic

Let X = [xL, xU] denote the n-dimensional interval{
x ∈ R

n : xL ≤ x ≤ xU
}

, and for any D ⊂ R
n, let ID denote

the set of interval subsets of D. Given f : D → R
m, an inter-

val function F : ID → IR
m is an inclusion function for f on D if

f(X) ≡ {f(x) : x ∈ X} ⊂ F(X), ∀X ∈ ID.
A function f is factorable if it is a finite recursive composition

of basic operations, including { +, −, ×, ÷ } and intrinsic univari-
ate functions such as ex, xn, etc. In this case, a specific inclusion
function called the natural interval extension of f can be computed
by interval arithmetic (IA), which replaces each basic operation with
an interval-valued counterpart (Moore, 1966). This is very efficient,
but can also be very conservative due to the dependency problem;
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