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a  b  s  t  r  a  c  t

The  simultaneous  design  and  control  aims  to achieve  economic  profits  and  smooth  operation  of  the
process  even  under  uncertainties.  However,  the  over-estimation  of  the  uncertainties  leads  to  conservative
design  decisions.  Because  of the  disturbance  inputs,  the  cost  is not  easily  evaluated.  Unlike  the  past  work
of  design  and  control,  the proposed  probabilistic  approach  framework  directly  uses  the  Gaussian  process
(GP) model  to represent  the  uncertainty  in  the  input.  The GP  model  that  acts as  the  cost function  model  is
trained  by  an  iterative  approach.  The  variability  can  be  evaluated  statistically  by  the  GP  model.  In addition,
the  expected  improvement  optimization  is employed  to select  the  representative  data,  so  no  redundant
data are  used  in  the  modeling.  The  expected  improvement  searches  for the most  probable  operating
condition  for  improvement  based  on the  predictive  distribution  from  the  GP  model.  The  applicability  of
the proposed  method  is  tested  on a mixing  tank.

© 2017  Elsevier  Ltd. All  rights  reserved.

1. Introduction

In order to achieve maximum economic benefit with the
minimum cost the plants are to be operated in a flexible man-
ner. Traditionally, the process and control design are carried out
sequentially. In the design phase the plant structure and operat-
ing conditions are calculated considering economic objectives at
steady state with process constraints. The control system is then
designed to achieve the desired dynamic behaviour. The problem
of this approach is that the designed operational conditions and
the steady-state based economic objective of a process flow sheet
may  not be optimal or may  not result in good plant-wide dynamic
performance when met  with external disturbances and parametric
or model uncertainties. The disturbances to the highly nonlinear
chemical processes can destabilize the control system. As a result,
the process design can affect the dynamic characteristics of the
process and thus the control performance of the process.

The application of simultaneous design and control in chem-
ical process aims to identify the design condition that generates
maximum benefit with good dynamic performance of the control
system even under the influence of disturbances and the exis-
tence of uncertainties. The interactions between process design
and process control have been documented since 1940s (Ziegler
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and Nichols, 1943) and have motivated a number of works that
have provided theoretical background about properties such as
controllability, operability, stability and the selection of measure-
ments and manipulated variables in process control design. Initial
work (Morari and Stephanopoulos, 1980; Skogestad and Morari,
1987; Stephanopoulos et al., 1979) dealt mostly with controllability
assessment and its incorporation into process synthesis as well as
the selection of the control structure. On the other hand, the flexibil-
ity and the operability properties were considered (Dimitriadis and
Pistikopoulos, 1995; Grossmann and Straub, 1996). These meth-
ods mainly adopted the steady-state economics with the respective
criterion.

With the availability of improved computational resources
allowing more powerful optimization methods and advanced
control strategies, a wide variety of integrated design and con-
trol methodologies has been reported. The different concepts
of the integration of design and control philosophy are evi-
denced in the reviews of the state of the art (Ricardez-Sandoval
et al., 2009; Sharifzadeh, 2013; Yuan et al., 2012). Ricardez-
Sandoval et al. (2009) adopted a classification of the methods
based on the dynamic behaviour description and the description
of the cost functions in the optimization framework. These clas-
sifications include (1) controllability index-based approach, (2)
dynamic optimization-based approach and (3) robust model-based
approach.

The controllability index approach evaluates the variability in
the process variables using open-loop controllability metrics such
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as the condition number (Luyben and Floudas, 1994) and the rel-
ative gain array (Alhammadi and Romagnoli, 2004). The process
output variability estimated from these indicators was  then used to
assess the optimal process design. The dynamics of the system were
mostly represented by linear systems or linearized models and
therefore the method was inadequate for handling nonlinear pro-
cesses. Dynamic optimization approach proposed a formal dynamic
optimization problem that aims to estimate the critical profile in
the disturbance that produces the worst-case scenario (Bansal et al.,
2002; Mohideen et al., 1996). The resulting optimization formula-
tions, which include the rigorous mechanistic process model, are
computationally demanding even for simple process systems. Thus,
the applicability of these techniques to optimally design chemical
processes in the presence of disturbances and parameter uncer-
tainty is challenging or even prohibitive. Model based approach
enables the efficient computation of the worst-case scenario. A
study is conducted to investigate the system’s dynamics and the
effect of the disturbances that may  be affecting the process during
its normal operation. The estimation of the worst-case variability
in process variables due to disturbances is then used for computa-
tion of the worst-case scenario design and control (Chawankul et al.,
2007; Trainor et al., 2013). The method alleviates the computational
burden imposed by the dynamic optimization methods and can be
used to perform the optimal design of large-scale dynamic systems
(Muñoz et al., 2011; Ricardez-Sandoval et al., 2011). On the other
hand, the variability of the systems can be described by a probabilis-
tic approach as reported in recent work. Ricardez-Sandoval (2012)
introduced a distribution analysis on the worst-case variability
in the integrated design framework. The worst case variability is
approximated by normal distribution functions in order to esti-
mate the largest variability expected for the process variables at a
user-defined probability limit. It requires Monte Carlo sampling at
various conditions. The Monte Carlo sampling learns the complete
region of the cost function. Intuitively, only certain regions will
provide solution to the problem. It follows that learning only these
representative regions is sufficient in the evaluation of the opti-
mum  process operation condition. The design and control research
is an actively researched area. Vega et al. (2014) provided an exten-
sive review and classification of the current state of design and
control while Pistikopoulos and Diangelakis (2016) discussed the
current application of design and control. Rasoulian and Ricardez-
Sandoval (2016) applied the stochastic nonlinear model predictive
control to a thin film deposition process. Rafiei-Shishavan et al.
(2017) and Mehta and Ricardez-Sandoval (2016) proposed the
use of approximating the function with power series expansions
for simultaneous design and control. The low-order polynomials
approximations are parametric models and the order of the models
need to be determined for good performance.

Due to the disturbance inputs, it is not easy to evaluate the cost.
This work proposed the representation of the variability of the pro-
cess using a probabilistic framework. In the proposed method, the
Gaussian process (GP) model that acts as the cost function model
is trained by an iterative approach. The variability can be evaluated
statistically using the GP model. GP model is a nonlinear modeling
method and it also naturally accounts for the disturbance distri-
bution description through the uncertain input. In addition, the
expected improvement (EI) optimization is adapted. EI is a prob-
abilistic method that provides a systematic way to explore new
conditions based on the expected return. It facilitates the selec-
tion of representative data and thus no redundant data are used in
the modeling. The use of EI in this work allows the pinpointing of
the region that provides the greatest possibility for improvement
statistically. Furthermore, the stability and feasibility constraint is
considered simultaneously in the optimization to ensure that the
designed condition is stable and feasible. The remainder of this
paper is organized as follows. In the next section a problem def-

inition of this study is presented and is followed by details of the
proposed method. Next, the case studies demonstrate the features
of proposed method and the article ends with some concluding
remarks.

2. Problem definition

The objective of the simultaneous design and control is to mini-
mize the cost such that controller parameters and the manipulated
variables ensure process stability. This can be formulated as

min  CF = min
(

CFnom

(
ū, d̄,  q

)
+ VC (ū, d, q)

)
(1)

s.t.

˝ (u, d, y, q) = 0

� (u,  d, y, q) ≥ 0

u = c
(

�, yc

)
� (u, d, y, q) = 0

ul ≤ u ≤ uu

yl ≤ y ≤ yu

(2)

The objective function to be minimized is represented by the
cost function (CF) (Eq. (1)) that is the combination of nominal cost
function,CFnom and the variability cost (VC). CFnom refers to the over-
all cost at nominal condition including the nominal values of the
input disturbance variables. The term, d̄ refers to the input distur-
bance variables at the nominal value. The variability on the other
hand is evaluated considering the distribution of the input distur-
bance variables represented by d. In the modeling, the cost function
is directly modeled as the output term, CF.  This is because the
cost in this case is considered as a function of output qualities as
shown in Fig. 2. On the other hand, the output, y, is a function of
the inputs, u. As a result, the cost function is written as such to
represent the relation, CF (u). ū denotes the nominal steady state
values of the inputs and ȳ represents nominal outputs. ū is the
designed condition and the variability is evaluated at design condi-
tion. ū is constrained on the range of the input/the actual available
input of the physical process. In Eq. (2) � expresses additional
requirements for the process performance such as stability con-
straints and the superscripts of l and u of the variables u and y
indicate the process input and output variable bounds.  ̋ and �
represent the equality and inequality equations of the process and
the mechanistic models are assumed to be available. The mecha-
nistic models consist of manipulated variables u, output variables
y, disturbances d and design variables q. The output variables are
partitioned as y =

[
yol yc

]
where yol and yc represents the open

loop and controlled output variables respectively. The manipulated
variables u (u =

[
u1 · · · ui · · · uI

]
) are paired to the corre-

sponding output variables (yc =
[

yc,1 · · · yc,i · · · yc,I

]
). Fig. 1

shows I control loops where Ci, i = 1, . . .,  I denotes the controllers,
ysp,i, i = 1, . . .,  I represents the set points and ei, i = 1, . . .,  I the
feedback errors. The manipulated variables are determined by the
controllers represented as

u = c
(

�, yc

)
(3)

where � is the vector of controller parameters and the vectorized
form of c denotes the controller equations of the particular ui − yc,i,
i = 1, · · · , I pairs. The cost function is affected by disturbance, making
its variability difficult to be evaluated. The disturbances considered
are assumed to follow a specific probability density function for a
given period of time. In this work, the disturbance is considered
to be Gaussian distributed with known mean and variance. The
GP is a probabilistic model and provides a way  to for evaluating
the variability as it naturally accounts for the disturbance distribu-
tion description through the uncertain input. Moreover, the direct
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