Accepted Manuscript

Title: Integrating Renewables into Multi-Period Heat Exchanger Network Synthesis Considering Economics and Environmental Impact

Author: Adeniyi J. Isafiade Michael Short Milos Bogataj

Zdravko Kravanja

PII: S0098-1354(16)30351-9

DOI: http://dx.doi.org/doi:10.1016/j.compchemeng.2016.11.017

Reference: CACE 5606

To appear in: Computers and Chemical Engineering

Received date: 21-2-2016 Revised date: 10-11-2016 Accepted date: 11-11-2016

Please cite this article as: Isafiade, Adeniyi J., Short, Michael., Bogataj, Milos., & Kravanja, Zdravko., Integrating Renewables into Multi-Period Heat Exchanger Network Synthesis Considering Economics and Environmental Impact. *Computers and Chemical Engineering* http://dx.doi.org/10.1016/j.compchemeng.2016.11.017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Integrating Renewables into Multi-Period Heat Exchanger Network Synthesis Considering Economics and Environmental Impact

Adeniyi J. Isafiade*a, Michael Shorta, Milos Bogatajb, Zdravko Kravanjab,

^aDepartment of Chemical Engineering, University of Cape Town, Private Bag, Rondebosch 7701, South Africa ^bFaculty of Chemistry and Chemical Engineering, University of Maribor, Slovenia

*Corresponding author: (A.J. Isafiade) Tel: +27 21 650 4869; E-mail address: <u>aj.isafiade@uct.ac.za</u>

Highlights

- A multi-season and multi-period stage-wise superstructure model is proposed
- Model integrates renewable and non-renewable energy into process heat demand
- Gives best combination of utilities based on economics and environmental impact

Abstract

This paper presents a further development of synthesis methods that considers economics and environmental impact in the integration of renewable energy into the optimisation of heat exchanger networks involving multiple periods of operations and multiple options of utilities. The multi-period process stream parameters, and those of the utility sources are integrated in a systematic approach using an expanded version of the simplified stage-wise superstructure multi-period model. Two examples were used to demonstrate the benefits of the expanded synthesis method and the quality of solutions obtained were judged by representation on a Pareto curve and by the use of a modified goal solution method. It was found that various combinations of utility sources were selected for use at various periods/seasons of operations, while utilities from solar photovoltaic were not selected for use at any of the periods/season of operation due to its relatively high cost and limited periods of availability.

Nomenclature

Abbreviations

ACI Area cost index

AF Annualisation factor

EI Environmental impact

EMAT Exchanger minimum approach temperature

HENS Heat exchanger network synthesis

LP Linear programming

MILP Mixed integer linear programming

MINLP Mixed integer non-linear programming

NOP Number of periods

NOS Number of seasons

SWS Stage-wise superstructure

Download English Version:

https://daneshyari.com/en/article/6469186

Download Persian Version:

https://daneshyari.com/article/6469186

<u>Daneshyari.com</u>