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a  b  s  t  r  a  c  t

Empirical  model  identification  for biological  systems  is a  challenging  task  due  to  the  combined  effects
of complex  interactions,  nonlinear  effects,  and lack  of  specific  measurements.  In this  context,  several
researchers  have  provided  tools  for experimental  design,  model  structure  selection,  and  optimal  param-
eter estimation,  often  packaged  together  in iterative  model  identification  schemes.  Still,  one  often  has
to rely  on  a limited  number  of candidate  rate laws  such  as  Contois,  Haldane,  Monod,  Moser,  and  Tessier.
In  this  work,  we  propose  to use  shape-constrained  spline  functions  as  a way  to reduce  the  number  of
candidate  rate  laws  to  be  considered  in a model  identification  study,  while  retaining  or  even expanding
the  explanatory  power  in  comparison  to  conventional  sets  of  candidate  rate  laws.  The  shape-constrained
rate  laws  exhibit  the flexibility  of typical  black-box  models,  while  offering  a transparent  interpretation
akin  to conventionally  applied  rate  laws  such  as Monod  and  Haldane.  In addition,  the  shape-constrained
spline  models  lead to  limited  extrapolation  errors  despite  the  large  number  of  parameters.

© 2017  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Despite major advances in computational tools, the task of
building reliable models for process design, monitoring, opera-
tion, and automation remains difficult (e.g., Mašić and Eberl, 2014).
Quite often, modeling is challenged by the complexity and non-
linearity of the process at hand. In the case of biological systems,
especially mixed cultures, a large number of key variables cannot
be measured. This typically includes the concentrations of active
organisms and their internal metabolites.

The lack of completeness of experimental data has led to the for-
mulation of the activated sludge model (ASM) family in the case of
biological wastewater treatment systems with suspended biomass.
These models represent mixed-culture biological systems in a sim-
plified way by identifying the most important groups of bacteria
and a macroscopic description of the growth and decay processes
associated with them. In these models, one makes use of switch-
ing functions to describe the most important effects of substrates,
products, and inhibiting compounds on the growth and decay pro-
cesses (Henze et al., 2008). The Monod function (Monod, 1949) is
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most popular to describe substrate affinity. However, the Monod
model is not considered a universal representation of all bacterial
behaviors (Moser, 1985). Less popular alternatives include models
by Moser (1958), Tessier (1942), and Contois (1959). Importantly,
this approach is necessarily empirical. In other words, these switch-
ing functions describe empirically established relationships rather
than laws derived from first principles. As a result, extrapolation
errors can easily be observed when a model is used to optimize
process controls (e.g., Sin et al., 2006).

Avoiding extrapolation errors can in part be solved by designing
experiments carefully (e.g., Donckels et al., 2009). In addition, fre-
quent model updating might help account for stochastic changes in
the process. However, modifying both the model structure and its
parameters on a frequent basis leads to large computational efforts
for experimental design, model structure selection, and parameter
estimation. With the methods proposed and applied in this work,
we aim to reduce such efforts and thereby facilitate faster model
identification procedures.

Our method relies on the observation that many switching func-
tions have the same shape despite being different functions. This
is the case for the affinity switching functions discussed above.
Indeed, the Contois, Monod, Moser, and Tessier switching func-
tions exhibit the same increasing and concave shape with respect
to the substrate concentration. The Monod function is often used
by default, mainly to avoid large computational efforts related to
the selection among the list of candidates. However, this can lead
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to severe extrapolation errors during process design, as is also
demonstrated in Neumann and Gujer (2008). Alternatively, one can
consider several candidates in a library of rate laws and select via
an iterative process of experimental design, parameter estimation,
and model structure selection (e.g., Sin et al., 2005). The power of
such an approach increases with the number of candidate rate laws,
which however results in a larger computational effort. Even if the
computational requirements can be satisfied, such an approach can
still fail as a library cannot be guaranteed to be universal, that is, to
encompass all feasible behaviors (Refsgaard et al., 2006).

To accommodate for the lack of universality discussed above,
we propose shape-constrained spline functions (SCS, Villez et al.,
2013) as an alternative way to formulate rate laws. Instead of eval-
uating multiple candidate rate laws with approximately the same
shape, we propose to use a single shape-constrained spline function
for each considered shape. In other words, we replace all candi-
date rate laws with a given shape with a single generic rate law.
Initial results obtained with this approach were presented at the
DYCOPS-CAB2016 conference (Mašić et al., 2016a). The present
work expands and completes this study. In Mašić et al. (2016a),
simplified biological processes were simulated by assuming that
the net growth is zero at all time. This led to the analysis of uni-
variate processes. In this work, this assumption is removed, thus
leading to a more general multivariate approach. In addition, while
Mašić et al. (2016a) only dealt with the increasing-concave case
described above, we consider here rate laws that include inhibi-
tion effects as well. Furthermore, the simulation study in this work
includes (i) more realism, (ii) a single improved parameter estima-
tion method for parameter estimation in practical conditions, (iii)
a validation test demonstrating that extrapolation errors are lim-
ited, and (iv) a more detailed interpretation and discussion of the
results.

The considered spline functions are flexible thanks to the use of
a large number of parameters. As a result, they can describe a wide
range of kinetic behaviors, akin to black-box modeling approaches
(Guay et al., 2004). Note that the application of shape constraints
ensures the identifiability and straightforward interpretation of the
resulting models, as will be shown below. Shape restrictions are
commonly applied for fitting hazard models (Meyer, 2008). More
recently, SCS functions were adopted for fault detection and fault
diagnosis in a qualitative trend analysis framework (Villez et al.,
2013; Villez and Habermacher, 2016). The main difference with
these previous studies is that the SCS functions now appear inside
a set of nonlinear differential equations.

2. Differences with prior work

The differences with the previous DYCOPS-CAB study (Mašić
et al., 2016a) are:

• The substrate and biomass concentrations are considered as state
variables, as opposed to the DYCOPS-CAB case, where the biomass
concentration was assumed constant. As a consequence, the esti-
mated parameters are associated with the stoichiometry, the
growth rate, and the decay rate, whereas the DYCOPS-CAB study
only considered the growth rate.

• The estimation of additional parameters in the multivariate
case called for the development of a new parameter estimation
method (see Section 3.4.2 below).

• The simulated experiments have been modified to appear more
realistic. In particular, the sampling frequency used in the
DYCOPS-CAB paper has been reduced significantly.

• In this work, only one parameter estimation procedure is used
for indirect model fitting of every model (Section 3.4.2). In con-
trast, the DYCOPS-CAB study used different parameter estimation

Fig. 1. Growth-rate laws considered in this work, as functions of the substrate
concentration. The rate laws are defined in Table 1.

procedures for the conventional rate laws and the SCS-based rate
laws.

• This work includes a validation test, in which the identified mod-
els are tested for their extrapolative capability. Such a test was
not part of the DYCOPS-CAB study.

• All figures in this paper are new. Although Figs. 4–6b bear simi-
larity with figures in the DYCOPS-CAB study, the data and their
interpretation have been modified according to the changes made
in the simulations. Furthermore, Figs. 1–3b and 7a–8, which
describe new ideas and results, were not in the DYCOPS-CAB
study.

• The discussion and conclusion sections were modified and
expanded significantly.

3. Mathematical model & methods

3.1. Model description

In this study, simple models describing bacterial growth and
decay are used. The models are similar in structure to the acti-
vated sludge models discussed in Henze et al. (2008). Let S(t) and
X(t) denote the substrate and biomass concentrations at time t.
The change in these concentrations with respect to time can be
expressed as

dS

dt
= − rg(S)

Y
X, S(0) = S0 (1)

dX

dt
= rg(S) X − rd(X), X(0) = X0 (2)

where rg(S) and rd(X) are rate laws expressing the bacterial growth
and decay as a function of S and X, respectively. The metabolic
product concentration P(t) can be computed as

P(t) = S0 − S(t). (3)

The initial concentrations are S0 and X0. This model describes
growth and decay as distinct processes in contrast to Mašić et al.
(2016a) which implicitly assumed the two process rates are the
same at all times.

The expression rg(S) for the specific growth rate can be varied
to express the effects of substrates, products, and other chemi-
cal species. In this study, we consider a classical set of rate laws
describing both uninhibited and inhibited bacterial growth pro-
cesses. This reflects a situation where no a priori knowledge is
available about the structure of the kinetic growth-rate law. The
considered growth-rate laws are described in the next section. For
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