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a  b  s  t  r  a  c  t

This  paper  presents  a multi-compartment  population  balance  model  for  wet  granulation  coupled  with
DEM  (discrete  element  method)  simulations.  Methodologies  are  developed  to extract  relevant  data  from
the  DEM  simulations  to  inform  the  population  balance  model.  First,  compartmental  residence  times are
calculated  for the  population  balance  model  from  DEM.  Then,  a suitable  collision  kernel  is chosen  for
the  population  balance  model  based  on  particle–particle  collision  frequencies  extracted  from  DEM.  It  is
found  that  the  population  balance  model  is  able  to predict  the  trends  exhibited  by  the  experimental  size
and  porosity  distributions  by utilising  the  information  provided  by  the  DEM  simulations.

© 2017  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Wet  granulation is a manufacturing process to produce gran-
ules with desired properties from small particles and binders, using
equipments such as high-shear mixers, rotating drums and flu-
idised beds. Models for granulation can be broadly separated into
particle level models and models which simulate the process at
the unit operation level (Michaels, 2003; Heinrich et al., 2015).
Models at the particle level are developed to predict inter-particle
forces using fundamental physics and Iveson et al. (2001) did an
excellent review on such models. At the other end of the scale,
models at the unit operation level are used to predict the overall
behaviour of granulation processes and this paper focuses on this
aspect. Modelling approaches for wet granulation processes at the
unit operation level can be loosely separated into two  categories:
population balance modelling and discrete element method (DEM).
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The population balance approach tracks the change in the par-
ticle population with time through birth and death processes:
for applications in granulation, these processes are usually the
coalescence and breakage of particles (Braumann et al., 2007).
Traditionally, population balance models are one-dimensional
with particle size as the focus. However, one-dimensional mod-
els are insufficient to describe granulation processes accurately
(Iveson, 2002). Hence, over the last decade, population balance
models published in the literature have been at least two-
dimensional with liquid and solid concentrations as the properties
included (Oullion et al., 2009; Marshall et al., 2013; Barrasso and
Ramachandran, 2014) and some models also include particle pore
volume (Chaudhury et al., 2014; Darelius et al., 2006; Poon et al.,
2008). The main advantage of the population balance approach is
that it is capable at considering detailed physical models for pro-
cesses such as coalescence (Chaudhury et al., 2014; Darelius et al.,
2006; Liu and Litster, 2002; Marshall et al., 2013), nucleation (Poon
et al., 2008; Oullion et al., 2009) and breakage (Ramachandran et al.,
2009). Population balance modelling is also suitable for long time
scale studies because of its low computational effort, but it requires
certain knowledge of the system in order to include the appropriate
processes.
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In DEM simulations, the motion of each particle is computed
simultaneously using Newtonian equations of motion (Cameron
et al., 2005). It is pointed out by Michaels (2003) that models at
the unit operation level often neglect the flow heterogeneity of
powder mixing processes and the DEM approach seems to be the
ideal solution to bridge this gap. However, DEM is computation-
ally expensive and it does not consider aggregation of granules
and other processes such as solidification of granules (Barrasso and
Ramachandran, 2014).

Nonetheless, it is possible to include particle flow in population
balance models. This is done by dividing the simulation domain into
multiple compartments with each of them having its own  popula-
tion balance equation. Thus, each compartment is considered to be
perfectly mixed but the process rates can differ between the com-
partments. A main drawback of this approach is that the flux rates
between the compartments are unknown but these can be deter-
mined by coupling DEM to population balance models. Population
balance models that involve DEM simulations generally fall into
three categories: models that use post-processed flux rates from
preliminary DEM simulations (Freireich et al., 2011; Bouffard et al.,
2012; Li et al., 2012; Sen and Ramachandran, 2013; Chaudhury
et al., 2015), models that utilise DEM to develop appropriate aggre-
gation kernels (Gantt et al., 2006; Tan et al., 2004), and models that
are directly coupled with DEM (Barrasso et al., 2014, 2015; Barrasso
and Ramachandran, 2014). The work carried out in this paper falls
into the first two categories.

The main purpose of this paper is to improve an existing multi-
compartment population balance model for a batch ploughshare
mixer (Lee et al., 2015a,b) with post-processed information from
DEM simulations. Previously, the residence times of the compart-
ments were unknown and they were tuned to fit an experimentally
measured size distribution. Besides that, the existing model uses a
size independent collision kernel and it is found that it is inappro-
priate for granulation systems (Gantt et al., 2006). In this paper,
DEM simulations are performed to determine the appropriate res-
idence times for the compartments and also to implement a size
dependent collision kernel.

This paper is organised as follows: A brief description of the pop-
ulation balance model is given in Section 2. Then, Section 3 outlines
the DEM simulations carried out in this work. Section 4 describes
the stochastic particle method used to solve the population bal-
ance model, in particular the adaptation of the majorant technique
(Menz et al., 2013; Patterson et al., 2011; Goodson and Kraft, 2002;
Eibeck and Wagner, 2000) to accelerate the simulation of colli-
sion events. Finally, the ability of the population balance model
to predict a set of experimental results is assessed in Section 5.

2. Multi-compartment population balance model

The experimental system considered in this work is the wet
granulation of lactose powder with deionised water carried out
in a ploughshare mixer depicted in Fig. 1 and it is fully described
by Kastner et al. (2013). It is modelled as a series of well-mixed
continuous-stirred tank reactors (CSTRs) to account for spatial
inhomogeneity and each reactor in the network is given a charac-
teristic residence time, �. The configuration of the compartmental
model is shown in Fig. 2. As previous studies showed that radial
dispersion is significantly quicker compared to axial dispersion
(Broadbent et al., 1995; Jones and Bridgwater, 1998; Jones et al.,
2007), the mixer is compartmentalised in the axial direction in
the model. The multi-compartment population balance model was
developed by Lee et al. (2015a,b), but the residence times of the
compartments were not known and the values were tuned to fit an
experimentally measured particle size distribution. In this work,
the residence times of the compartments are determined using
DEM and the methodology is presented in Section 3.1.

Fig. 1. CAD drawing of the mixer. The radial direction refers to direction in which
the blades rotate and the axial direction refers to the direction along the shaft.

In the model, particles take positions in a domain of compart-
ments, Z = {z1, z2, z3}. Throughout this work, the residence times
of z1, z2, and z3 are denoted as �1, �2, and �3 respectively. In order
to capture the spreading of binder liquid which is often regarded as
a crucial stage in granulation processes (Faure et al., 2001; Iveson
et al., 2001; Reynolds et al., 2004), the middle compartment z2 is
defined as the spray zone where liquid addition occurs. With the
exception of liquid addition, each compartment simulates the same
particle processes described in Section 2.2, but at different rates to
capture the spatial inhomogeneity of the process.

2.1. Type-space

The type-space is the mathematical description of a particle. In
this model, the type-space X  = {so, sr, le, li, p} has five inde-
pendent non-negative variables which describe a granule. They are
original solid volume so, reacted solid volume sr, external liquid
volume le, internal liquid volume li, and pore volume p.

Fig. 2. Configuration of the compartmental model. The mixer (Fig. 1) is compart-
mentalised in the axial direction. Each compartment has the same size.
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